QuantumCircuit#

class qiskit.circuit.QuantumCircuit(*regs, name=None, global_phase=0, metadata=None)[código fonte]#

Bases: object

Create a new circuit.

A circuit is a list of instructions bound to some registers.

Parâmetros:
  • regs (list(Register) or list(int) or list(list(Bit))) –

    The registers to be included in the circuit.

    • If a list of Register objects, represents the QuantumRegister and/or ClassicalRegister objects to include in the circuit.

      For example:

      • QuantumCircuit(QuantumRegister(4))

      • QuantumCircuit(QuantumRegister(4), ClassicalRegister(3))

      • QuantumCircuit(QuantumRegister(4, 'qr0'), QuantumRegister(2, 'qr1'))

    • If a list of int, the amount of qubits and/or classical bits to include in the circuit. It can either be a single int for just the number of quantum bits, or 2 ints for the number of quantum bits and classical bits, respectively.

      For example:

      • QuantumCircuit(4) # A QuantumCircuit with 4 qubits

      • QuantumCircuit(4, 3) # A QuantumCircuit with 4 qubits and 3 classical bits

    • If a list of python lists containing Bit objects, a collection of Bit s to be added to the circuit.

  • name (str) – the name of the quantum circuit. If not set, an automatically generated string will be assigned.

  • global_phase (float or ParameterExpression) – The global phase of the circuit in radians.

  • metadata (dict) – Arbitrary key value metadata to associate with the circuit. This gets stored as free-form data in a dict in the metadata attribute. It will not be directly used in the circuit.

Levanta:

CircuitError – if the circuit name, if given, is not valid.

Examples

Construct a simple Bell state circuit.

from qiskit import QuantumCircuit

qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
qc.draw('mpl')

(Source code)

../_images/qiskit-circuit-QuantumCircuit-1.png

Construct a 5-qubit GHZ circuit.

from qiskit import QuantumCircuit

qc = QuantumCircuit(5)
qc.h(0)
qc.cx(0, range(1, 5))
qc.measure_all()

Construct a 4-qubit Bernstein-Vazirani circuit using registers.

from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit

qr = QuantumRegister(3, 'q')
anc = QuantumRegister(1, 'ancilla')
cr = ClassicalRegister(3, 'c')
qc = QuantumCircuit(qr, anc, cr)

qc.x(anc[0])
qc.h(anc[0])
qc.h(qr[0:3])
qc.cx(qr[0:3], anc[0])
qc.h(qr[0:3])
qc.barrier(qr)
qc.measure(qr, cr)

qc.draw('mpl')

(Source code)

../_images/qiskit-circuit-QuantumCircuit-2.png

Attributes

ancillas#

Returns a list of ancilla bits in the order that the registers were added.

calibrations#

Return calibration dictionary.

The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}}

clbits#

Returns a list of classical bits in the order that the registers were added.

data#

Return the circuit data (instructions and context).

Retorno:

a list-like object containing the CircuitInstructions for each instruction.

Tipo de retorno:

QuantumCircuitData

extension_lib = 'include "qelib1.inc";'#
global_phase#

Return the global phase of the circuit in radians.

header = 'OPENQASM 2.0;'#
instances = 153#
layout#

Return any associated layout information about the circuit

This attribute contains an optional TranspileLayout object. This is typically set on the output from transpile() or PassManager.run() to retain information about the permutations caused on the input circuit by transpilation.

There are two types of permutations caused by the transpile() function, an initial layout which permutes the qubits based on the selected physical qubits on the Target, and a final layout which is an output permutation caused by SwapGates inserted during routing.

metadata#

The user provided metadata associated with the circuit.

The metadata for the circuit is a user provided dict of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.

num_ancillas#

Return the number of ancilla qubits.

num_clbits#

Return number of classical bits.

num_parameters#

The number of parameter objects in the circuit.

num_qubits#

Return number of qubits.

op_start_times#

Return a list of operation start times.

This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.

Retorno:

List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data.

Levanta:

AttributeError – When circuit is not scheduled.

parameters#

The parameters defined in the circuit.

This attribute returns the Parameter objects in the circuit sorted alphabetically. Note that parameters instantiated with a ParameterVector are still sorted numerically.

Examples

The snippet below shows that insertion order of parameters does not matter.

>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters  # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])

Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal «10» comes before «2» in strict alphabetical sorting.

>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
   ┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
   └─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])

To respect numerical sorting, a ParameterVector can be used.


>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
...     circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
    ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
    ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
    ..., ParameterVectorElement(x[11])
])
Retorno:

The sorted Parameter objects in the circuit.

prefix = 'circuit'#
qubits#

Returns a list of quantum bits in the order that the registers were added.

Methods

add_bits(bits)[código fonte]#

Add Bits to the circuit.

add_calibration(gate, qubits, schedule, params=None)[código fonte]#

Register a low-level, custom pulse definition for the given gate.

Parâmetros:
  • gate (Union[Gate, str]) – Gate information.

  • qubits (Union[int, Tuple[int]]) – List of qubits to be measured.

  • schedule (Schedule) – Schedule information.

  • params (Optional[List[Union[float, Parameter]]]) – A list of parameters.

Levanta:

Exception – if the gate is of type string and params is None.

add_register(*regs)[código fonte]#

Add registers.

append(instruction, qargs=None, cargs=None)[código fonte]#

Append one or more instructions to the end of the circuit, modifying the circuit in place.

The qargs and cargs will be expanded and broadcast according to the rules of the given Instruction, and any non-Bit specifiers (such as integer indices) will be resolved into the relevant instances.

If a CircuitInstruction is given, it will be unwrapped, verified in the context of this circuit, and a new object will be appended to the circuit. In this case, you may not pass qargs or cargs separately.

Parâmetros:
Retorno:

a handle to the CircuitInstructions that were actually added to the circuit.

Tipo de retorno:

qiskit.circuit.InstructionSet

Levanta:

CircuitError – if the operation passed is not an instance of Instruction .

assign_parameters(parameters: Mapping[Parameter, ParameterExpression | float] | Sequence[ParameterExpression | float], inplace: Literal[False] = False, *, flat_input: bool = False, strict: bool = True) QuantumCircuit[código fonte]#
assign_parameters(parameters: Mapping[Parameter, ParameterExpression | float] | Sequence[ParameterExpression | float], inplace: Literal[True] = False, *, flat_input: bool = False, strict: bool = True) None

Assign parameters to new parameters or values.

If parameters is passed as a dictionary, the keys must be Parameter instances in the current circuit. The values of the dictionary can either be numeric values or new parameter objects.

If parameters is passed as a list or array, the elements are assigned to the current parameters in the order of parameters which is sorted alphabetically (while respecting the ordering in ParameterVector objects).

The values can be assigned to the current circuit object or to a copy of it.

Parâmetros:
  • parameters – Either a dictionary or iterable specifying the new parameter values.

  • inplace – If False, a copy of the circuit with the bound parameters is returned. If True the circuit instance itself is modified.

  • flat_input – If True and parameters is a mapping type, it is assumed to be exactly a mapping of {parameter: value}. By default (False), the mapping may also contain ParameterVector keys that point to a corresponding sequence of values, and these will be unrolled during the mapping.

  • strict – If False, any parameters given in the mapping that are not used in the circuit will be ignored. If True (the default), an error will be raised indicating a logic error.

Levanta:
  • CircuitError – If parameters is a dict and contains parameters not present in the circuit.

  • ValueError – If parameters is a list/array and the length mismatches the number of free parameters in the circuit.

Retorno:

A copy of the circuit with bound parameters if inplace is False, otherwise None.

Examples

Create a parameterized circuit and assign the parameters in-place.

from qiskit.circuit import QuantumCircuit, Parameter

circuit = QuantumCircuit(2)
params = [Parameter('A'), Parameter('B'), Parameter('C')]
circuit.ry(params[0], 0)
circuit.crx(params[1], 0, 1)
circuit.draw('mpl')
circuit.assign_parameters({params[0]: params[2]}, inplace=True)
circuit.draw('mpl')

(Source code)

../_images/qiskit-circuit-QuantumCircuit-3_00.png
../_images/qiskit-circuit-QuantumCircuit-3_01.png

Bind the values out-of-place by list and get a copy of the original circuit.

from qiskit.circuit import QuantumCircuit, ParameterVector

circuit = QuantumCircuit(2)
params = ParameterVector('P', 2)
circuit.ry(params[0], 0)
circuit.crx(params[1], 0, 1)

bound_circuit = circuit.assign_parameters([1, 2])
bound_circuit.draw('mpl')

circuit.draw('mpl')

(Source code)

../_images/qiskit-circuit-QuantumCircuit-4_00.png
../_images/qiskit-circuit-QuantumCircuit-4_01.png
barrier(*qargs, label=None)[código fonte]#

Apply Barrier. If qargs is empty, applies to all qubits in the circuit.

Parâmetros:
  • qargs (QubitSpecifier) – Specification for one or more qubit arguments.

  • label (str) – The string label of the barrier.

Retorno:

handle to the added instructions.

Tipo de retorno:

qiskit.circuit.InstructionSet

bind_parameters(values)[código fonte]#

Assign numeric parameters to values yielding a new circuit.

If the values are given as list or array they are bound to the circuit in the order of parameters (see the docstring for more details).

To assign new Parameter objects or bind the values in-place, without yielding a new circuit, use the assign_parameters() method.

Parâmetros:

values (Mapping[Parameter, float] | Sequence[float]) – {parameter: value, ...} or [value1, value2, ...]

Levanta:
  • CircuitError – If values is a dict and contains parameters not present in the circuit.

  • TypeError – If values contains a ParameterExpression.

Retorno:

Copy of self with assignment substitution.

Tipo de retorno:

QuantumCircuit

break_loop()[código fonte]#

Apply BreakLoopOp.

Aviso

If you are using the context-manager «builder» forms of if_test(), for_loop() or while_loop(), you can only call this method if you are within a loop context, because otherwise the «resource width» of the operation cannot be determined. This would quickly lead to invalid circuits, and so if you are trying to construct a reusable loop body (without the context managers), you must also use the non-context-manager form of if_test() and if_else(). Take care that the BreakLoopOp instruction must span all the resources of its containing loop, not just the immediate scope.

Retorno:

A handle to the instruction created.

Levanta:

CircuitError – if this method was called within a builder context, but not contained within a loop.

Tipo de retorno:

InstructionSet

static cast(value, type_)[código fonte]#

Best effort to cast value to type. Otherwise, returns the value.

Tipo de retorno:

S | T

cbit_argument_conversion(clbit_representation)[código fonte]#

Converts several classical bit representations (such as indexes, range, etc.) into a list of classical bits.

Parâmetros:

clbit_representation (Object) – representation to expand

Retorno:

Where each tuple is a classical bit.

Tipo de retorno:

List(tuple)

ccx(control_qubit1, control_qubit2, target_qubit, ctrl_state=None)[código fonte]#

Apply CCXGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • control_qubit1 (QubitSpecifier) – The qubit(s) used as the first control.

  • control_qubit2 (QubitSpecifier) – The qubit(s) used as the second control.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

ccz(control_qubit1, control_qubit2, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CCZGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • control_qubit1 (QubitSpecifier) – The qubit(s) used as the first control.

  • control_qubit2 (QubitSpecifier) – The qubit(s) used as the second control.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “10”). Defaults to controlling on the “11” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

ch(control_qubit, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CHGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • control_qubit (QubitSpecifier) – The qubit(s) used as the control.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

clear()[código fonte]#

Clear all instructions in self.

Clearing the circuits will keep the metadata and calibrations.

classmethod cls_instances()[código fonte]#

Return the current number of instances of this class, useful for auto naming.

Tipo de retorno:

int

classmethod cls_prefix()[código fonte]#

Return the prefix to use for auto naming.

Tipo de retorno:

str

cnot(control_qubit, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CXGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • control_qubit (QubitSpecifier) – The qubit(s) used as the control.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

Veja também

QuantumCircuit.cx: the same function with a different name.

compose(other, qubits=None, clbits=None, front=False, inplace=False, wrap=False)[código fonte]#

Compose circuit with other circuit or instruction, optionally permuting wires.

other can be narrower or of equal width to self.

Parâmetros:
  • other (qiskit.circuit.Instruction or QuantumCircuit) – (sub)circuit or instruction to compose onto self. If not a QuantumCircuit, this can be anything that append will accept.

  • qubits (list[Qubit|int]) – qubits of self to compose onto.

  • clbits (list[Clbit|int]) – clbits of self to compose onto.

  • front (bool) – If True, front composition will be performed. This is not possible within control-flow builder context managers.

  • inplace (bool) – If True, modify the object. Otherwise return composed circuit.

  • wrap (bool) – If True, wraps the other circuit into a gate (or instruction, depending on whether it contains only unitary instructions) before composing it onto self.

Retorno:

the composed circuit (returns None if inplace==True).

Tipo de retorno:

QuantumCircuit

Levanta:
  • CircuitError – if no correct wire mapping can be made between the two circuits, such as if other is wider than self.

  • CircuitError – if trying to emit a new circuit while self has a partially built control-flow context active, such as the context-manager forms of if_test(), for_loop() and while_loop().

  • CircuitError – if trying to compose to the front of a circuit when a control-flow builder block is active; there is no clear meaning to this action.

Examples

>>> lhs.compose(rhs, qubits=[3, 2], inplace=True)
            ┌───┐                   ┌─────┐                ┌───┐
lqr_1_0: ───┤ H ├───    rqr_0: ──■──┤ Tdg ├    lqr_1_0: ───┤ H ├───────────────
            ├───┤              ┌─┴─┐└─────┘                ├───┤
lqr_1_1: ───┤ X ├───    rqr_1: ┤ X ├───────    lqr_1_1: ───┤ X ├───────────────
         ┌──┴───┴──┐           └───┘                    ┌──┴───┴──┐┌───┐
lqr_1_2: ┤ U1(0.1) ├  +                     =  lqr_1_2: ┤ U1(0.1) ├┤ X ├───────
         └─────────┘                                    └─────────┘└─┬─┘┌─────┐
lqr_2_0: ─────■─────                           lqr_2_0: ─────■───────■──┤ Tdg ├
            ┌─┴─┐                                          ┌─┴─┐        └─────┘
lqr_2_1: ───┤ X ├───                           lqr_2_1: ───┤ X ├───────────────
            └───┘                                          └───┘
lcr_0: 0 ═══════════                           lcr_0: 0 ═══════════════════════

lcr_1: 0 ═══════════                           lcr_1: 0 ═══════════════════════
continue_loop()[código fonte]#

Apply ContinueLoopOp.

Aviso

If you are using the context-manager «builder» forms of if_test(), for_loop() or while_loop(), you can only call this method if you are within a loop context, because otherwise the «resource width» of the operation cannot be determined. This would quickly lead to invalid circuits, and so if you are trying to construct a reusable loop body (without the context managers), you must also use the non-context-manager form of if_test() and if_else(). Take care that the ContinueLoopOp instruction must span all the resources of its containing loop, not just the immediate scope.

Retorno:

A handle to the instruction created.

Levanta:

CircuitError – if this method was called within a builder context, but not contained within a loop.

Tipo de retorno:

InstructionSet

control(num_ctrl_qubits=1, label=None, ctrl_state=None)[código fonte]#

Control this circuit on num_ctrl_qubits qubits.

Parâmetros:
  • num_ctrl_qubits (int) – The number of control qubits.

  • label (str) – An optional label to give the controlled operation for visualization.

  • ctrl_state (str or int) – The control state in decimal or as a bitstring (e.g. “111”). If None, use 2**num_ctrl_qubits - 1.

Retorno:

The controlled version of this circuit.

Tipo de retorno:

QuantumCircuit

Levanta:

CircuitError – If the circuit contains a non-unitary operation and cannot be controlled.

copy(name=None)[código fonte]#

Copy the circuit.

Parâmetros:

name (str) – name to be given to the copied circuit. If None, then the name stays the same

Retorno:

a deepcopy of the current circuit, with the specified name

Tipo de retorno:

QuantumCircuit

copy_empty_like(name=None)[código fonte]#

Return a copy of self with the same structure but empty.

That structure includes:
  • name, calibrations and other metadata

  • global phase

  • all the qubits and clbits, including the registers

Parâmetros:

name (str) – Name for the copied circuit. If None, then the name stays the same.

Retorno:

An empty copy of self.

Tipo de retorno:

QuantumCircuit

count_ops()[código fonte]#

Count each operation kind in the circuit.

Retorno:

a breakdown of how many operations of each kind, sorted by amount.

Tipo de retorno:

OrderedDict

cp(theta, control_qubit, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CPhaseGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • theta (ParameterValueType) – The angle of the rotation.

  • control_qubit (QubitSpecifier) – The qubit(s) used as the control.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

crx(theta, control_qubit, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CRXGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • theta (ParameterValueType) – The angle of the rotation.

  • control_qubit (QubitSpecifier) – The qubit(s) used as the control.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

cry(theta, control_qubit, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CRYGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • theta (ParameterValueType) – The angle of the rotation.

  • control_qubit (QubitSpecifier) – The qubit(s) used as the control.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

crz(theta, control_qubit, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CRZGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • theta (ParameterValueType) – The angle of the rotation.

  • control_qubit (QubitSpecifier) – The qubit(s) used as the control.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

cs(control_qubit, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CSGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • control_qubit (QubitSpecifier) – The qubit(s) used as the control.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

csdg(control_qubit, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CSdgGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • control_qubit (QubitSpecifier) – The qubit(s) used as the control.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

cswap(control_qubit, target_qubit1, target_qubit2, label=None, ctrl_state=None)[código fonte]#

Apply CSwapGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • control_qubit (QubitSpecifier) – The qubit(s) used as the control.

  • target_qubit1 (QubitSpecifier) – The qubit(s) targeted by the gate.

  • target_qubit2 (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling on the '1' state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

csx(control_qubit, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CSXGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • control_qubit (QubitSpecifier) – The qubit(s) used as the control.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

cu(theta, phi, lam, gamma, control_qubit, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CUGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • theta (ParameterValueType) – The \(\theta\) rotation angle of the gate.

  • phi (ParameterValueType) – The \(\phi\) rotation angle of the gate.

  • lam (ParameterValueType) – The \(\lambda\) rotation angle of the gate.

  • gamma (ParameterValueType) – The global phase applied of the U gate, if applied.

  • control_qubit (QubitSpecifier) – The qubit(s) used as the control.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

cx(control_qubit, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CXGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • control_qubit (QubitSpecifier) – The qubit(s) used as the control.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

cy(control_qubit, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CYGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • control_qubit (QubitSpecifier) – The qubit(s) used as the controls.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

cz(control_qubit, target_qubit, label=None, ctrl_state=None)[código fonte]#

Apply CZGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • control_qubit (QubitSpecifier) – The qubit(s) used as the controls.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • label (str | None) – The string label of the gate in the circuit.

  • ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. “1”). Defaults to controlling on the “1” state.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

dcx(qubit1, qubit2)[código fonte]#

Apply DCXGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

decompose(gates_to_decompose=None, reps=1)[código fonte]#

Call a decomposition pass on this circuit, to decompose one level (shallow decompose).

Parâmetros:
  • gates_to_decompose (type or str or list(type, str)) – Optional subset of gates to decompose. Can be a gate type, such as HGate, or a gate name, such as “h”, or a gate label, such as “My H Gate”, or a list of any combination of these. If a gate name is entered, it will decompose all gates with that name, whether the gates have labels or not. Defaults to all gates in circuit.

  • reps (int) – Optional number of times the circuit should be decomposed. For instance, reps=2 equals calling circuit.decompose().decompose(). can decompose specific gates specific time

Retorno:

a circuit one level decomposed

Tipo de retorno:

QuantumCircuit

delay(duration, qarg=None, unit='dt')[código fonte]#

Apply Delay. If qarg is None, applies to all qubits. When applying to multiple qubits, delays with the same duration will be created.

Parâmetros:
  • duration (int or float or ParameterExpression) – duration of the delay.

  • qarg (Object) – qubit argument to apply this delay.

  • unit (str) – unit of the duration. Supported units: 's', 'ms', 'us', 'ns', 'ps', and 'dt'. Default is 'dt', i.e. integer time unit depending on the target backend.

Retorno:

handle to the added instructions.

Tipo de retorno:

qiskit.circuit.InstructionSet

Levanta:

CircuitError – if arguments have bad format.

depth(filter_function=<function QuantumCircuit.<lambda>>)[código fonte]#

Return circuit depth (i.e., length of critical path).

Parâmetros:

filter_function (callable) – A function to filter instructions. Should take as input a tuple of (Instruction, list(Qubit), list(Clbit)). Instructions for which the function returns False are ignored in the computation of the circuit depth. By default filters out «directives», such as barrier or snapshot.

Retorno:

Depth of circuit.

Tipo de retorno:

int

Notes

The circuit depth and the DAG depth need not be the same.

diagonal(diag, qubit)#

Attach a diagonal gate to a circuit.

The decomposition is based on Theorem 7 given in «Synthesis of Quantum Logic Circuits» by Shende et al. (https://arxiv.org/pdf/quant-ph/0406176.pdf).

Parâmetros:
  • diag (list) – list of the 2^k diagonal entries (for a diagonal gate on k qubits). Must contain at least two entries

  • qubit (QuantumRegister|list) – list of k qubits the diagonal is acting on (the order of the qubits specifies the computational basis in which the diagonal gate is provided: the first element in diag acts on the state where all the qubits in q are in the state 0, the second entry acts on the state where all the qubits q[1],…,q[k-1] are in the state zero and q[0] is in the state 1, and so on)

Retorno:

the diagonal gate which was attached to the circuit.

Tipo de retorno:

QuantumCircuit

Levanta:

QiskitError – if the list of the diagonal entries or the qubit list is in bad format; if the number of diagonal entries is not 2^k, where k denotes the number of qubits

draw(output=None, scale=None, filename=None, style=None, interactive=False, plot_barriers=True, reverse_bits=None, justify=None, vertical_compression='medium', idle_wires=True, with_layout=True, fold=None, ax=None, initial_state=False, cregbundle=None, wire_order=None)[código fonte]#

Draw the quantum circuit. Use the output parameter to choose the drawing format:

text: ASCII art TextDrawing that can be printed in the console.

mpl: images with color rendered purely in Python using matplotlib.

latex: high-quality images compiled via latex.

latex_source: raw uncompiled latex output.

Aviso

Support for Expr nodes in conditions and SwitchCaseOp.target fields is preliminary and incomplete. The text and mpl drawers will make a best-effort attempt to show data dependencies, but the LaTeX-based drawers will skip these completely.

Parâmetros:
  • output (str) – select the output method to use for drawing the circuit. Valid choices are text, mpl, latex, latex_source. By default the text drawer is used unless the user config file (usually ~/.qiskit/settings.conf) has an alternative backend set as the default. For example, circuit_drawer = latex. If the output kwarg is set, that backend will always be used over the default in the user config file.

  • scale (float) – scale of image to draw (shrink if < 1.0). Only used by the mpl, latex and latex_source outputs. Defaults to 1.0.

  • filename (str) – file path to save image to. Defaults to None.

  • style (dict or str) – dictionary of style or file name of style json file. This option is only used by the mpl or latex output type. If style is a str, it is used as the path to a json file which contains a style dict. The file will be opened, parsed, and then any style elements in the dict will replace the default values in the input dict. A file to be loaded must end in .json, but the name entered here can omit .json. For example, style='iqx.json' or style='iqx'. If style is a dict and the 'name' key is set, that name will be used to load a json file, followed by loading the other items in the style dict. For example, style={'name': 'iqx'}. If style is not a str and name is not a key in the style dict, then the default value from the user config file (usually ~/.qiskit/settings.conf) will be used, for example, circuit_mpl_style = iqx. If none of these are set, the default style will be used. The search path for style json files can be specified in the user config, for example, circuit_mpl_style_path = /home/user/styles:/home/user. See: DefaultStyle for more information on the contents.

  • interactive (bool) – when set to true, show the circuit in a new window (for mpl this depends on the matplotlib backend being used supporting this). Note when used with either the text or the latex_source output type this has no effect and will be silently ignored. Defaults to False.

  • reverse_bits (bool) – when set to True, reverse the bit order inside registers for the output visualization. Defaults to False unless the user config file (usually ~/.qiskit/settings.conf) has an alternative value set. For example, circuit_reverse_bits = True.

  • plot_barriers (bool) – enable/disable drawing barriers in the output circuit. Defaults to True.

  • justify (string) – options are left, right or none. If anything else is supplied, it defaults to left justified. It refers to where gates should be placed in the output circuit if there is an option. none results in each gate being placed in its own column.

  • vertical_compression (string) – high, medium or low. It merges the lines generated by the text output so the drawing will take less vertical room. Default is medium. Only used by the text output, will be silently ignored otherwise.

  • idle_wires (bool) – include idle wires (wires with no circuit elements) in output visualization. Default is True.

  • with_layout (bool) – include layout information, with labels on the physical layout. Default is True.

  • fold (int) – sets pagination. It can be disabled using -1. In text, sets the length of the lines. This is useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using shutil.get_terminal_size(). However, if running in jupyter, the default line length is set to 80 characters. In mpl, it is the number of (visual) layers before folding. Default is 25.

  • ax (matplotlib.axes.Axes) – Only used by the mpl backend. An optional Axes object to be used for the visualization output. If none is specified, a new matplotlib Figure will be created and used. Additionally, if specified there will be no returned Figure since it is redundant.

  • initial_state (bool) – Optional. Adds |0> in the beginning of the wire. Default is False.

  • cregbundle (bool) – Optional. If set True, bundle classical registers. Default is True, except for when output is set to "text".

  • wire_order (list) – Optional. A list of integers used to reorder the display of the bits. The list must have an entry for every bit with the bits in the range 0 to (num_qubits + num_clbits).

Retorno:

TextDrawing or matplotlib.figure or PIL.Image or str:

  • TextDrawing (output=”text”)

    A drawing that can be printed as ascii art.

  • matplotlib.figure.Figure (output=”mpl”)

    A matplotlib figure object for the circuit diagram.

  • PIL.Image (output=”latex”)

    An in-memory representation of the image of the circuit diagram.

  • str (output=”latex_source”)

    The LaTeX source code for visualizing the circuit diagram.

Levanta:

Example

from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
q = QuantumRegister(1)
c = ClassicalRegister(1)
qc = QuantumCircuit(q, c)
qc.h(q)
qc.measure(q, c)
qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})

(Source code)

../_images/qiskit-circuit-QuantumCircuit-5.png
ecr(qubit1, qubit2)[código fonte]#

Apply ECRGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

find_bit(bit)[código fonte]#

Find locations in the circuit which can be used to reference a given Bit.

Parâmetros:

bit (Bit) – The bit to locate.

Retorno:

A 2-tuple. The first element (index)

contains the index at which the Bit can be found (in either qubits, clbits, depending on its type). The second element (registers) is a list of (register, index) pairs with an entry for each Register in the circuit which contains the Bit (and the index in the Register at which it can be found).

Tipo de retorno:

namedtuple(int, List[Tuple(Register, int)])

Notes

The circuit index of an AncillaQubit will be its index in qubits, not ancillas.

Levanta:
Tipo de retorno:

BitLocations

for_loop(indexset: Iterable[int], loop_parameter: Parameter | None, body: None, qubits: None, clbits: None, *, label: str | None) qiskit.circuit.controlflow.for_loop.ForLoopContext[código fonte]#
for_loop(indexset: Iterable[int], loop_parameter: Parameter | None, body: QuantumCircuit, qubits: Sequence[Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]], clbits: Sequence[Clbit | ClassicalRegister | int | slice | Sequence[Clbit | int]], *, label: str | None) InstructionSet

Create a for loop on this circuit.

There are two forms for calling this function. If called with all its arguments (with the possible exception of label), it will create a ForLoopOp with the given body. If body (and qubits and clbits) are not passed, then this acts as a context manager, which, when entered, provides a loop variable (unless one is given, in which case it will be reused) and will automatically build a ForLoopOp when the scope finishes. In this form, you do not need to keep track of the qubits or clbits you are using, because the scope will handle it for you.

For example:

from qiskit import QuantumCircuit
qc = QuantumCircuit(2, 1)

with qc.for_loop(range(5)) as i:
    qc.h(0)
    qc.cx(0, 1)
    qc.measure(0, 0)
    qc.break_loop().c_if(0, True)
Parâmetros:
  • indexset (Iterable[int]) – A collection of integers to loop over. Always necessary.

  • loop_parameter (Optional[Parameter]) –

    The parameter used within body to which the values from indexset will be assigned. In the context-manager form, if this argument is not supplied, then a loop parameter will be allocated for you and returned as the value of the with statement. This will only be bound into the circuit if it is used within the body.

    If this argument is None in the manual form of this method, body will be repeated once for each of the items in indexset but their values will be ignored.

  • body (Optional[QuantumCircuit]) – The loop body to be repeatedly executed. Omit this to use the context-manager mode.

  • qubits (Optional[Sequence[QubitSpecifier]]) – The circuit qubits over which the loop body should be run. Omit this to use the context-manager mode.

  • clbits (Optional[Sequence[ClbitSpecifier]]) – The circuit clbits over which the loop body should be run. Omit this to use the context-manager mode.

  • label (Optional[str]) – The string label of the instruction in the circuit.

Retorno:

depending on the call signature, either a context manager for creating the for loop (it will automatically be added to the circuit at the end of the block), or an InstructionSet handle to the appended loop operation.

Tipo de retorno:

InstructionSet or ForLoopContext

Levanta:

CircuitError – if an incorrect calling convention is used.

fredkin(control_qubit, target_qubit1, target_qubit2)[código fonte]#

Apply CSwapGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

Veja também

QuantumCircuit.cswap: the same function with a different name.

static from_instructions(instructions, *, qubits=(), clbits=(), name=None, global_phase=0, metadata=None)[código fonte]#

Construct a circuit from an iterable of CircuitInstructions.

Parâmetros:
  • instructions (Iterable[CircuitInstruction | tuple[qiskit.circuit.Instruction] | tuple[qiskit.circuit.Instruction, Iterable[Qubit]] | tuple[qiskit.circuit.Instruction, Iterable[Qubit], Iterable[Clbit]]]) – The instructions to add to the circuit.

  • qubits (Iterable[Qubit]) – Any qubits to add to the circuit. This argument can be used, for example, to enforce a particular ordering of qubits.

  • clbits (Iterable[Clbit]) – Any classical bits to add to the circuit. This argument can be used, for example, to enforce a particular ordering of classical bits.

  • name (str | None) – The name of the circuit.

  • global_phase (ParameterValueType) – The global phase of the circuit in radians.

  • metadata (dict | None) – Arbitrary key value metadata to associate with the circuit.

Retorno:

The quantum circuit.

Tipo de retorno:

QuantumCircuit

static from_qasm_file(path)[código fonte]#

Read an OpenQASM 2.0 program from a file and convert to an instance of QuantumCircuit.

Parâmetros:

path (str) – Path to the file for an OpenQASM 2 program

Retorno:

The QuantumCircuit object for the input OpenQASM 2.

Tipo de retorno:

QuantumCircuit

Veja também

qasm2.load(): the complete interface to the OpenQASM 2 importer.

static from_qasm_str(qasm_str)[código fonte]#

Convert a string containing an OpenQASM 2.0 program to a QuantumCircuit.

Parâmetros:

qasm_str (str) – A string containing an OpenQASM 2.0 program.

Retorno:

The QuantumCircuit object for the input OpenQASM 2

Tipo de retorno:

QuantumCircuit

Veja também

qasm2.loads(): the complete interface to the OpenQASM 2 importer.

get_instructions(name)[código fonte]#

Get instructions matching name.

Parâmetros:

name (str) – The name of instruction to.

Retorno:

list of (instruction, qargs, cargs).

Tipo de retorno:

list(tuple)

h(qubit)[código fonte]#

Apply HGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:

qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

hamiltonian(operator, time, qubits, label=None)#

Apply hamiltonian evolution to qubits.

This gate resolves to a UnitaryGate as \(U(t) = exp(-i t H)\), which can be decomposed into basis gates if it is 2 qubits or less, or simulated directly in Aer for more qubits.

Parâmetros:
  • operator (matrix or Operator) – a hermitian operator.

  • time (float or ParameterExpression) – time evolution parameter.

  • qubits (Union[int, Tuple[int]]) – The circuit qubits to apply the transformation to.

  • label (str) – unitary name for backend [Default: None].

Retorno:

The quantum circuit.

Tipo de retorno:

QuantumCircuit

Levanta:

ExtensionError – if input data is not an N-qubit unitary operator.

has_calibration_for(instruction)[código fonte]#

Return True if the circuit has a calibration defined for the instruction context. In this case, the operation does not need to be translated to the device basis.

has_register(register)[código fonte]#

Test if this circuit has the register r.

Parâmetros:

register (Register) – a quantum or classical register.

Retorno:

True if the register is contained in this circuit.

Tipo de retorno:

bool

i(qubit)[código fonte]#

Apply IGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:

qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

id(qubit)[código fonte]#

Apply IGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:

qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

Veja também

QuantumCircuit.i: the same function.

if_else(condition, true_body, false_body, qubits, clbits, label=None)[código fonte]#

Apply IfElseOp.

Nota

This method does not have an associated context-manager form, because it is already handled by the if_test() method. You can use the else part of that with something such as:

from qiskit.circuit import QuantumCircuit, Qubit, Clbit
bits = [Qubit(), Qubit(), Clbit()]
qc = QuantumCircuit(bits)
qc.h(0)
qc.cx(0, 1)
qc.measure(0, 0)
with qc.if_test((bits[2], 0)) as else_:
    qc.h(0)
with else_:
    qc.x(0)
Parâmetros:
  • condition (tuple[ClassicalRegister, int] | tuple[Clbit, int] | tuple[Clbit, bool]) – A condition to be evaluated at circuit runtime which, if true, will trigger the evaluation of true_body. Can be specified as either a tuple of a ClassicalRegister to be tested for equality with a given int, or as a tuple of a Clbit to be compared to either a bool or an int.

  • true_body (QuantumCircuit) – The circuit body to be run if condition is true.

  • false_body (QuantumCircuit) – The circuit to be run if condition is false.

  • qubits (Sequence[QubitSpecifier]) – The circuit qubits over which the if/else should be run.

  • clbits (Sequence[ClbitSpecifier]) – The circuit clbits over which the if/else should be run.

  • label (str | None) – The string label of the instruction in the circuit.

Levanta:

CircuitError – If the provided condition references Clbits outside the enclosing circuit.

Retorno:

A handle to the instruction created.

Tipo de retorno:

InstructionSet

if_test(condition: tuple[ClassicalRegister | Clbit, int], true_body: None, qubits: None, clbits: None, *, label: str | None) qiskit.circuit.controlflow.if_else.IfContext[código fonte]#
if_test(condition: tuple[ClassicalRegister | Clbit, int], true_body: QuantumCircuit, qubits: Sequence[Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]], clbits: Sequence[Clbit | ClassicalRegister | int | slice | Sequence[Clbit | int]], *, label: str | None = None) InstructionSet

Create an if statement on this circuit.

There are two forms for calling this function. If called with all its arguments (with the possible exception of label), it will create a IfElseOp with the given true_body, and there will be no branch for the false condition (see also the if_else() method). However, if true_body (and qubits and clbits) are not passed, then this acts as a context manager, which can be used to build if statements. The return value of the with statement is a chainable context manager, which can be used to create subsequent else blocks. In this form, you do not need to keep track of the qubits or clbits you are using, because the scope will handle it for you.

For example:

from qiskit.circuit import QuantumCircuit, Qubit, Clbit
bits = [Qubit(), Qubit(), Qubit(), Clbit(), Clbit()]
qc = QuantumCircuit(bits)

qc.h(0)
qc.cx(0, 1)
qc.measure(0, 0)
qc.h(0)
qc.cx(0, 1)
qc.measure(0, 1)

with qc.if_test((bits[3], 0)) as else_:
    qc.x(2)
with else_:
    qc.h(2)
    qc.z(2)
Parâmetros:
  • condition (Tuple[Union[ClassicalRegister, Clbit], int]) – A condition to be evaluated at circuit runtime which, if true, will trigger the evaluation of true_body. Can be specified as either a tuple of a ClassicalRegister to be tested for equality with a given int, or as a tuple of a Clbit to be compared to either a bool or an int.

  • true_body (Optional[QuantumCircuit]) – The circuit body to be run if condition is true.

  • qubits (Optional[Sequence[QubitSpecifier]]) – The circuit qubits over which the if/else should be run.

  • clbits (Optional[Sequence[ClbitSpecifier]]) – The circuit clbits over which the if/else should be run.

  • label (Optional[str]) – The string label of the instruction in the circuit.

Retorno:

depending on the call signature, either a context manager for creating the if block (it will automatically be added to the circuit at the end of the block), or an InstructionSet handle to the appended conditional operation.

Tipo de retorno:

InstructionSet or IfContext

Levanta:
  • CircuitError – If the provided condition references Clbits outside the enclosing circuit.

  • CircuitError – if an incorrect calling convention is used.

Retorno:

A handle to the instruction created.

initialize(params, qubits=None, normalize=False)#

Initialize qubits in a specific state.

Qubit initialization is done by first resetting the qubits to \(|0\rangle\) followed by calling qiskit.extensions.StatePreparation class to prepare the qubits in a specified state. Both these steps are included in the qiskit.extensions.Initialize instruction.

Parâmetros:
  • params (str or list or int) –

    • str: labels of basis states of the Pauli eigenstates Z, X, Y. See Statevector.from_label(). Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label “01” initializes the qubit zero to \(|1\rangle\) and the qubit one to \(|0\rangle\).

    • list: vector of complex amplitudes to initialize to.

    • int: an integer that is used as a bitmap indicating which qubits to initialize to \(|1\rangle\). Example: setting params to 5 would initialize qubit 0 and qubit 2 to \(|1\rangle\) and qubit 1 to \(|0\rangle\).

  • qubits (QuantumRegister or Qubit or int) –

    • QuantumRegister: A list of qubits to be initialized [Default: None].

    • Qubit: Single qubit to be initialized [Default: None].

    • int: Index of qubit to be initialized [Default: None].

    • list: Indexes of qubits to be initialized [Default: None].

  • normalize (bool) – whether to normalize an input array to a unit vector.

Retorno:

a handle to the instruction that was just initialized

Tipo de retorno:

qiskit.circuit.Instruction

Examples

Prepare a qubit in the state \((|0\rangle - |1\rangle) / \sqrt{2}\).

import numpy as np
from qiskit import QuantumCircuit

circuit = QuantumCircuit(1)
circuit.initialize([1/np.sqrt(2), -1/np.sqrt(2)], 0)
circuit.draw()

output:

     ┌──────────────────────────────┐
q_0: ┤ Initialize(0.70711,-0.70711) ├
     └──────────────────────────────┘

Initialize from a string two qubits in the state \(|10\rangle\). The order of the labels is reversed with respect to qubit index. More information about labels for basis states are in Statevector.from_label().

import numpy as np
from qiskit import QuantumCircuit

circuit = QuantumCircuit(2)
circuit.initialize('01', circuit.qubits)
circuit.draw()

output:

     ┌──────────────────┐
q_0: ┤0                 ├
     │  Initialize(0,1) │
q_1: ┤1                 ├
     └──────────────────┘

Initialize two qubits from an array of complex amplitudes.

import numpy as np
from qiskit import QuantumCircuit

circuit = QuantumCircuit(2)
circuit.initialize([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits)
circuit.draw()

output:

     ┌────────────────────────────────────┐
q_0: ┤0                                   ├
     │  Initialize(0,0.70711,-0.70711j,0) │
q_1: ┤1                                   ├
     └────────────────────────────────────┘
inverse()[código fonte]#

Invert (take adjoint of) this circuit.

This is done by recursively inverting all gates.

Retorno:

the inverted circuit

Tipo de retorno:

QuantumCircuit

Levanta:

CircuitError – if the circuit cannot be inverted.

Examples

input:

     ┌───┐
q_0: ┤ H ├─────■──────
     └───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
          └──────────┘

output:

                  ┌───┐
q_0: ──────■──────┤ H ├
     ┌─────┴─────┐└───┘
q_1: ┤ RX(-1.57) ├─────
     └───────────┘
iso(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None, epsilon=1e-10)#

Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.

Parâmetros:
  • isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).

  • q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).

  • q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.

  • q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.

  • q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.

  • epsilon (float) – error tolerance of calculations. Default is epsilon = _EPS.

Retorno:

the isometry is attached to the quantum circuit.

Tipo de retorno:

QuantumCircuit

Levanta:

QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.

isometry(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None, epsilon=1e-10)#

Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.

Parâmetros:
  • isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).

  • q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).

  • q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.

  • q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.

  • q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.

  • epsilon (float) – error tolerance of calculations. Default is epsilon = _EPS.

Retorno:

the isometry is attached to the quantum circuit.

Tipo de retorno:

QuantumCircuit

Levanta:

QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.

iswap(qubit1, qubit2)[código fonte]#

Apply iSwapGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

mcp(lam, control_qubits, target_qubit)[código fonte]#

Apply MCPhaseGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

mcrx(theta, q_controls, q_target, use_basis_gates=False)#

Apply Multiple-Controlled X rotation gate

Parâmetros:
  • self (QuantumCircuit) – The QuantumCircuit object to apply the mcrx gate on.

  • theta (float) – angle theta

  • q_controls (QuantumRegister or list(Qubit)) – The list of control qubits

  • q_target (Qubit) – The target qubit

  • use_basis_gates (bool) – use p, u, cx

Levanta:

QiskitError – parameter errors

mcry(theta, q_controls, q_target, q_ancillae=None, mode=None, use_basis_gates=False)#

Apply Multiple-Controlled Y rotation gate

Parâmetros:
  • self (QuantumCircuit) – The QuantumCircuit object to apply the mcry gate on.

  • theta (float) – angle theta

  • q_controls (list(Qubit)) – The list of control qubits

  • q_target (Qubit) – The target qubit

  • q_ancillae (QuantumRegister or tuple(QuantumRegister, int)) – The list of ancillary qubits.

  • mode (string) – The implementation mode to use

  • use_basis_gates (bool) – use p, u, cx

Levanta:

QiskitError – parameter errors

mcrz(lam, q_controls, q_target, use_basis_gates=False)#

Apply Multiple-Controlled Z rotation gate

Parâmetros:
  • self (QuantumCircuit) – The QuantumCircuit object to apply the mcrz gate on.

  • lam (float) – angle lambda

  • q_controls (list(Qubit)) – The list of control qubits

  • q_target (Qubit) – The target qubit

  • use_basis_gates (bool) – use p, u, cx

Levanta:

QiskitError – parameter errors

mct(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')[código fonte]#

Apply MCXGate.

The multi-cX gate can be implemented using different techniques, which use different numbers of ancilla qubits and have varying circuit depth. These modes are:

  • 'noancilla': Requires 0 ancilla qubits.

  • 'recursion': Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0.

  • 'v-chain': Requires 2 less ancillas than the number of control qubits.

  • 'v-chain-dirty': Same as for the clean ancillas (but the circuit will be longer).

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • control_qubits (Sequence[QubitSpecifier]) – The qubits used as the controls.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • ancilla_qubits (QubitSpecifier | Sequence[QubitSpecifier] | None) – The qubits used as the ancillae, if the mode requires them.

  • mode (str) – The choice of mode, explained further above.

Retorno:

A handle to the instructions created.

Levanta:
  • ValueError – if the given mode is not known, or if too few ancilla qubits are passed.

  • AttributeError – if no ancilla qubits are passed, but some are needed.

Tipo de retorno:

InstructionSet

Veja também

QuantumCircuit.mcx: the same gate with a different name.

mcx(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')[código fonte]#

Apply MCXGate.

The multi-cX gate can be implemented using different techniques, which use different numbers of ancilla qubits and have varying circuit depth. These modes are:

  • 'noancilla': Requires 0 ancilla qubits.

  • 'recursion': Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0.

  • 'v-chain': Requires 2 less ancillas than the number of control qubits.

  • 'v-chain-dirty': Same as for the clean ancillas (but the circuit will be longer).

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • control_qubits (Sequence[QubitSpecifier]) – The qubits used as the controls.

  • target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.

  • ancilla_qubits (QubitSpecifier | Sequence[QubitSpecifier] | None) – The qubits used as the ancillae, if the mode requires them.

  • mode (str) – The choice of mode, explained further above.

Retorno:

A handle to the instructions created.

Levanta:
  • ValueError – if the given mode is not known, or if too few ancilla qubits are passed.

  • AttributeError – if no ancilla qubits are passed, but some are needed.

Tipo de retorno:

InstructionSet

measure(qubit, cbit)[código fonte]#

Measure a quantum bit (qubit) in the Z basis into a classical bit (cbit).

When a quantum state is measured, a qubit is projected in the computational (Pauli Z) basis to either \(\lvert 0 \rangle\) or \(\lvert 1 \rangle\). The classical bit cbit indicates the result of that projection as a 0 or a 1 respectively. This operation is non-reversible.

Parâmetros:
Retorno:

handle to the added instructions.

Tipo de retorno:

qiskit.circuit.InstructionSet

Levanta:

CircuitError – if arguments have bad format.

Examples

In this example, a qubit is measured and the result of that measurement is stored in the classical bit (usually expressed in diagrams as a double line):

from qiskit import QuantumCircuit
circuit = QuantumCircuit(1, 1)
circuit.h(0)
circuit.measure(0, 0)
circuit.draw()
     ┌───┐┌─┐
  q: ┤ H ├┤M├
     └───┘└╥┘
c: 1/══════╩═
           0

It is possible to call measure with lists of qubits and cbits as a shortcut for one-to-one measurement. These two forms produce identical results:

circuit = QuantumCircuit(2, 2)
circuit.measure([0,1], [0,1])
circuit = QuantumCircuit(2, 2)
circuit.measure(0, 0)
circuit.measure(1, 1)

Instead of lists, you can use QuantumRegister and ClassicalRegister under the same logic.

from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
qreg = QuantumRegister(2, "qreg")
creg = ClassicalRegister(2, "creg")
circuit = QuantumCircuit(qreg, creg)
circuit.measure(qreg, creg)

This is equivalent to:

circuit = QuantumCircuit(qreg, creg)
circuit.measure(qreg[0], creg[0])
circuit.measure(qreg[1], creg[1])
measure_active(inplace=True)[código fonte]#

Adds measurement to all non-idle qubits. Creates a new ClassicalRegister with a size equal to the number of non-idle qubits being measured.

Returns a new circuit with measurements if inplace=False.

Parâmetros:

inplace (bool) – All measurements inplace or return new circuit.

Retorno:

Returns circuit with measurements when inplace = False.

Tipo de retorno:

QuantumCircuit

measure_all(inplace=True, add_bits=True)[código fonte]#

Adds measurement to all qubits.

By default, adds new classical bits in a ClassicalRegister to store these measurements. If add_bits=False, the results of the measurements will instead be stored in the already existing classical bits, with qubit n being measured into classical bit n.

Returns a new circuit with measurements if inplace=False.

Parâmetros:
  • inplace (bool) – All measurements inplace or return new circuit.

  • add_bits (bool) – Whether to add new bits to store the results.

Retorno:

Returns circuit with measurements when inplace=False.

Tipo de retorno:

QuantumCircuit

Levanta:

CircuitError – if add_bits=False but there are not enough classical bits.

ms(theta, qubits)[código fonte]#

Apply MSGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

num_connected_components(unitary_only=False)[código fonte]#

How many non-entangled subcircuits can the circuit be factored to.

Parâmetros:

unitary_only (bool) – Compute only unitary part of graph.

Retorno:

Number of connected components in circuit.

Tipo de retorno:

int

num_nonlocal_gates()[código fonte]#

Return number of non-local gates (i.e. involving 2+ qubits).

Conditional nonlocal gates are also included.

Tipo de retorno:

int

num_tensor_factors()[código fonte]#

Computes the number of tensor factors in the unitary (quantum) part of the circuit only.

Notes

This is here for backwards compatibility, and will be removed in a future release of Qiskit. You should call num_unitary_factors instead.

Tipo de retorno:

int

num_unitary_factors()[código fonte]#

Computes the number of tensor factors in the unitary (quantum) part of the circuit only.

Tipo de retorno:

int

p(theta, qubit)[código fonte]#

Apply PhaseGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

pauli(pauli_string, qubits)[código fonte]#

Apply PauliGate.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

power(power, matrix_power=False)[código fonte]#

Raise this circuit to the power of power.

If power is a positive integer and matrix_power is False, this implementation defaults to calling repeat. Otherwise, if the circuit is unitary, the matrix is computed to calculate the matrix power.

Parâmetros:
  • power (float) – The power to raise this circuit to.

  • matrix_power (bool) – If True, the circuit is converted to a matrix and then the matrix power is computed. If False, and power is a positive integer, the implementation defaults to repeat.

Levanta:

CircuitError – If the circuit needs to be converted to a gate but it is not unitary.

Retorno:

A circuit implementing this circuit raised to the power of power.

Tipo de retorno:

QuantumCircuit

prepare_state(state, qubits=None, label=None, normalize=False)#

Prepare qubits in a specific state.

This class implements a state preparing unitary. Unlike qiskit.extensions.Initialize it does not reset the qubits first.

Parâmetros:
  • state (str or list or int or Statevector) –

    • Statevector: Statevector to initialize to.

    • str: labels of basis states of the Pauli eigenstates Z, X, Y. See Statevector.from_label(). Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label “01” initializes the qubit zero to \(|1\rangle\) and the qubit one to \(|0\rangle\).

    • list: vector of complex amplitudes to initialize to.

    • int: an integer that is used as a bitmap indicating which qubits to initialize to \(|1\rangle\). Example: setting params to 5 would initialize qubit 0 and qubit 2 to \(|1\rangle\) and qubit 1 to \(|0\rangle\).

  • qubits (QuantumRegister or Qubit or int) –

    • QuantumRegister: A list of qubits to be initialized [Default: None].

    • Qubit: Single qubit to be initialized [Default: None].

    • int: Index of qubit to be initialized [Default: None].

    • list: Indexes of qubits to be initialized [Default: None].

  • label (str) – An optional label for the gate

  • normalize (bool) – Whether to normalize an input array to a unit vector.

Retorno:

a handle to the instruction that was just initialized

Tipo de retorno:

qiskit.circuit.Instruction

Examples

Prepare a qubit in the state \((|0\rangle - |1\rangle) / \sqrt{2}\).

import numpy as np
from qiskit import QuantumCircuit

circuit = QuantumCircuit(1)
circuit.prepare_state([1/np.sqrt(2), -1/np.sqrt(2)], 0)
circuit.draw()

output:

     ┌─────────────────────────────────────┐
q_0: ┤ State Preparation(0.70711,-0.70711) ├
     └─────────────────────────────────────┘

Prepare from a string two qubits in the state \(|10\rangle\). The order of the labels is reversed with respect to qubit index. More information about labels for basis states are in Statevector.from_label().

import numpy as np
from qiskit import QuantumCircuit

circuit = QuantumCircuit(2)
circuit.prepare_state('01', circuit.qubits)
circuit.draw()

output:

     ┌─────────────────────────┐
q_0: ┤0                        ├
     │  State Preparation(0,1) │
q_1: ┤1                        ├
     └─────────────────────────┘

Initialize two qubits from an array of complex amplitudes .. code-block:

import numpy as np
from qiskit import QuantumCircuit

circuit = QuantumCircuit(2)
circuit.prepare_state([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits)
circuit.draw()

output:

     ┌───────────────────────────────────────────┐
q_0: ┤0                                          ├
     │  State Preparation(0,0.70711,-0.70711j,0) │
q_1: ┤1                                          ├
     └───────────────────────────────────────────┘
qasm(formatted=False, filename=None, encoding=None)[código fonte]#

Return OpenQASM string.

Parâmetros:
  • formatted (bool) – Return formatted OpenQASM 2.0 string.

  • filename (str) – Save OpenQASM 2.0 to file with name “filename”.

  • encoding (str) – Optionally specify the encoding to use for the output file if filename is specified. By default this is set to the system’s default encoding (ie whatever locale.getpreferredencoding() returns) and can be set to any valid codec or alias from stdlib’s codec module

Retorno:

If formatted=False.

Tipo de retorno:

str

Levanta:
qbit_argument_conversion(qubit_representation)[código fonte]#

Converts several qubit representations (such as indexes, range, etc.) into a list of qubits.

Parâmetros:

qubit_representation (Object) – representation to expand

Retorno:

the resolved instances of the qubits.

Tipo de retorno:

List(Qubit)

qubit_duration(*qubits)[código fonte]#

Return the duration between the start and stop time of the first and last instructions, excluding delays, over the supplied qubits. Its time unit is self.unit.

Parâmetros:

*qubits (Qubit | int) – Qubits within self to include.

Retorno:

Return the duration between the first start and last stop time of non-delay instructions

Tipo de retorno:

float

qubit_start_time(*qubits)[código fonte]#

Return the start time of the first instruction, excluding delays, over the supplied qubits. Its time unit is self.unit.

Return 0 if there are no instructions over qubits

Parâmetros:
  • *qubits (Qubit | int) – Qubits within self to include. Integers are allowed for qubits, indicating

  • self.qubits. (indices of) –

Retorno:

Return the start time of the first instruction, excluding delays, over the qubits

Levanta:

CircuitError – if self is a not-yet scheduled circuit.

Tipo de retorno:

float

qubit_stop_time(*qubits)[código fonte]#

Return the stop time of the last instruction, excluding delays, over the supplied qubits. Its time unit is self.unit.

Return 0 if there are no instructions over qubits

Parâmetros:
  • *qubits (Qubit | int) – Qubits within self to include. Integers are allowed for qubits, indicating

  • self.qubits. (indices of) –

Retorno:

Return the stop time of the last instruction, excluding delays, over the qubits

Levanta:

CircuitError – if self is a not-yet scheduled circuit.

Tipo de retorno:

float

r(theta, phi, qubit)[código fonte]#

Apply RGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

rcccx(control_qubit1, control_qubit2, control_qubit3, target_qubit)[código fonte]#

Apply RC3XGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

rccx(control_qubit1, control_qubit2, target_qubit)[código fonte]#

Apply RCCXGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

remove_final_measurements(inplace=True)[código fonte]#

Removes final measurements and barriers on all qubits if they are present. Deletes the classical registers that were used to store the values from these measurements that become idle as a result of this operation, and deletes classical bits that are referenced only by removed registers, or that aren’t referenced at all but have become idle as a result of this operation.

Measurements and barriers are considered final if they are followed by no other operations (aside from other measurements or barriers.)

Parâmetros:

inplace (bool) – All measurements removed inplace or return new circuit.

Retorno:

Returns the resulting circuit when inplace=False, else None.

Tipo de retorno:

QuantumCircuit

repeat(reps)[código fonte]#

Repeat this circuit reps times.

Parâmetros:

reps (int) – How often this circuit should be repeated.

Retorno:

A circuit containing reps repetitions of this circuit.

Tipo de retorno:

QuantumCircuit

reset(qubit)[código fonte]#

Reset the quantum bit(s) to their default state.

Parâmetros:

qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – qubit(s) to reset.

Retorno:

handle to the added instruction.

Tipo de retorno:

qiskit.circuit.InstructionSet

reverse_bits()[código fonte]#

Return a circuit with the opposite order of wires.

The circuit is «vertically» flipped. If a circuit is defined over multiple registers, the resulting circuit will have the same registers but with their order flipped.

This method is useful for converting a circuit written in little-endian convention to the big-endian equivalent, and vice versa.

Retorno:

the circuit with reversed bit order.

Tipo de retorno:

QuantumCircuit

Examples

input:

     ┌───┐
a_0: ┤ H ├──■─────────────────
     └───┘┌─┴─┐
a_1: ─────┤ X ├──■────────────
          └───┘┌─┴─┐
a_2: ──────────┤ X ├──■───────
               └───┘┌─┴─┐
b_0: ───────────────┤ X ├──■──
                    └───┘┌─┴─┐
b_1: ────────────────────┤ X ├
                         └───┘

output:

                         ┌───┐
b_0: ────────────────────┤ X ├
                    ┌───┐└─┬─┘
b_1: ───────────────┤ X ├──■──
               ┌───┐└─┬─┘
a_0: ──────────┤ X ├──■───────
          ┌───┐└─┬─┘
a_1: ─────┤ X ├──■────────────
     ┌───┐└─┬─┘
a_2: ┤ H ├──■─────────────────
     └───┘
reverse_ops()[código fonte]#

Reverse the circuit by reversing the order of instructions.

This is done by recursively reversing all instructions. It does not invert (adjoint) any gate.

Retorno:

the reversed circuit.

Tipo de retorno:

QuantumCircuit

Examples

input:

     ┌───┐
q_0: ┤ H ├─────■──────
     └───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
          └──────────┘

output:

                 ┌───┐
q_0: ─────■──────┤ H ├
     ┌────┴─────┐└───┘
q_1: ┤ RX(1.57) ├─────
     └──────────┘
rv(vx, vy, vz, qubit)[código fonte]#

Apply RVGate.

For the full matrix form of this gate, see the underlying gate documentation.

Rotation around an arbitrary rotation axis \(v\), where \(|v|\) is the angle of rotation in radians.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

rx(theta, qubit, label=None)[código fonte]#

Apply RXGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • theta (ParameterValueType) – The rotation angle of the gate.

  • qubit (QubitSpecifier) – The qubit(s) to apply the gate to.

  • label (str | None) – The string label of the gate in the circuit.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

rxx(theta, qubit1, qubit2)[código fonte]#

Apply RXXGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

ry(theta, qubit, label=None)[código fonte]#

Apply RYGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • theta (ParameterValueType) – The rotation angle of the gate.

  • qubit (QubitSpecifier) – The qubit(s) to apply the gate to.

  • label (str | None) – The string label of the gate in the circuit.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

ryy(theta, qubit1, qubit2)[código fonte]#

Apply RYYGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

rz(phi, qubit)[código fonte]#

Apply RZGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

rzx(theta, qubit1, qubit2)[código fonte]#

Apply RZXGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

rzz(theta, qubit1, qubit2)[código fonte]#

Apply RZZGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

s(qubit)[código fonte]#

Apply SGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:

qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

sdg(qubit)[código fonte]#

Apply SdgGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:

qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

size(filter_function=<function QuantumCircuit.<lambda>>)[código fonte]#

Returns total number of instructions in circuit.

Parâmetros:

filter_function (callable) – a function to filter out some instructions. Should take as input a tuple of (Instruction, list(Qubit), list(Clbit)). By default filters out «directives», such as barrier or snapshot.

Retorno:

Total number of gate operations.

Tipo de retorno:

int

snapshot(label, snapshot_type='statevector', qubits=None, params=None)#

Take a statevector snapshot of the internal simulator representation. Works on all qubits, and prevents reordering (like barrier).

For other types of snapshots use the Snapshot extension directly.

Parâmetros:
  • label (str) – a snapshot label to report the result.

  • snapshot_type (str) – the type of the snapshot.

  • qubits (list or None) – the qubits to apply snapshot to [Default: None].

  • params (list or None) – the parameters for snapshot_type [Default: None].

Retorno:

with attached command

Tipo de retorno:

QuantumCircuit

Levanta:

ExtensionError – malformed command

squ(unitary_matrix, qubit, mode='ZYZ', up_to_diagonal=False)#

Decompose an arbitrary 2*2 unitary into three rotation gates.

Note that the decomposition is up to a global phase shift. (This is a well known decomposition which can be found for example in Nielsen and Chuang’s book «Quantum computation and quantum information».)

Parâmetros:
  • unitary_matrix (ndarray) – 2*2 unitary (given as a (complex) ndarray).

  • qubit (QuantumRegister or Qubit) – The qubit which the gate is acting on.

  • mode (string) – determines the used decomposition by providing the rotation axes. The allowed modes are: «ZYZ» (default)

  • up_to_diagonal (bool) – if set to True, the single-qubit unitary is decomposed up to a diagonal matrix, i.e. a unitary u” is implemented such that there exists a 2*2 diagonal gate d with u = d.dot(u”)

Retorno:

The single-qubit unitary instruction attached to the circuit.

Tipo de retorno:

InstructionSet

Levanta:

QiskitError – if the format is wrong; if the array u is not unitary

swap(qubit1, qubit2)[código fonte]#

Apply SwapGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

switch(target: Clbit | ClassicalRegister | int | slice | Sequence[Clbit | int], cases: None, qubits: None, clbits: None, *, label: str | None) qiskit.circuit.controlflow.switch_case.SwitchContext[código fonte]#
switch(target: Clbit | ClassicalRegister | int | slice | Sequence[Clbit | int], cases: Iterable[Tuple[Any, QuantumCircuit]], qubits: Sequence[Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]], clbits: Sequence[Clbit | ClassicalRegister | int | slice | Sequence[Clbit | int]], *, label: str | None) InstructionSet

Create a switch/case structure on this circuit.

There are two forms for calling this function. If called with all its arguments (with the possible exception of label), it will create a SwitchCaseOp with the given case structure. If cases (and qubits and clbits) are not passed, then this acts as a context manager, which will automatically build a SwitchCaseOp when the scope finishes. In this form, you do not need to keep track of the qubits or clbits you are using, because the scope will handle it for you.

Example usage:

from qiskit.circuit import QuantumCircuit, ClassicalRegister, QuantumRegister
qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
qc = QuantumCircuit(qreg, creg)
qc.h([0, 1, 2])
qc.measure([0, 1, 2], [0, 1, 2])

with qc.switch(creg) as case:
    with case(0):
        qc.x(0)
    with case(1, 2):
        qc.z(1)
    with case(case.DEFAULT):
        qc.cx(0, 1)
Parâmetros:
  • target (Union[ClassicalRegister, Clbit]) – The classical value to switch one. This must be integer-like.

  • cases (Iterable[Tuple[Any, QuantumCircuit]]) – A sequence of case specifiers. Each tuple defines one case body (the second item). The first item of the tuple can be either a single integer value, the special value CASE_DEFAULT, or a tuple of several integer values. Each of the integer values will be tried in turn; control will then pass to the body corresponding to the first match. CASE_DEFAULT matches all possible values. Omit in context-manager form.

  • qubits (Sequence[Qubit]) – The circuit qubits over which all case bodies execute. Omit in context-manager form.

  • clbits (Sequence[Clbit]) – The circuit clbits over which all case bodies execute. Omit in context-manager form.

  • label (Optional[str]) – The string label of the instruction in the circuit.

Retorno:

If used in context-manager mode, then this should be used as a with resource, which will return an object that can be repeatedly entered to produce cases for the switch statement. If the full form is used, then this returns a handle to the instructions created.

Tipo de retorno:

InstructionSet or SwitchCaseContext

Levanta:

CircuitError – if an incorrect calling convention is used.

sx(qubit)[código fonte]#

Apply SXGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:

qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

sxdg(qubit)[código fonte]#

Apply SXdgGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:

qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

t(qubit)[código fonte]#

Apply TGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:

qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

tdg(qubit)[código fonte]#

Apply TdgGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:

qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

tensor(other, inplace=False)[código fonte]#

Tensor self with other.

Remember that in the little-endian convention the leftmost operation will be at the bottom of the circuit. See also the docs for more information.

     ┌────────┐        ┌─────┐          ┌─────┐
q_0: ┤ bottom ├ ⊗ q_0: ┤ top ├  = q_0: ─┤ top ├──
     └────────┘        └─────┘         ┌┴─────┴─┐
                                  q_1: ┤ bottom ├
                                       └────────┘
Parâmetros:
  • other (QuantumCircuit) – The other circuit to tensor this circuit with.

  • inplace (bool) – If True, modify the object. Otherwise return composed circuit.

Tipo de retorno:

QuantumCircuit | None

Examples

from qiskit import QuantumCircuit
top = QuantumCircuit(1)
top.x(0);
bottom = QuantumCircuit(2)
bottom.cry(0.2, 0, 1);
tensored = bottom.tensor(top)
tensored.draw('mpl')

(Source code)

../_images/qiskit-circuit-QuantumCircuit-6.png
Retorno:

The tensored circuit (returns None if inplace==True).

Tipo de retorno:

QuantumCircuit

to_gate(parameter_map=None, label=None)[código fonte]#

Create a Gate out of this circuit.

Parâmetros:
  • parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the gate. If None, existing circuit parameters will also parameterize the gate.

  • label (str) – Optional gate label.

Retorno:

a composite gate encapsulating this circuit (can be decomposed back)

Tipo de retorno:

Gate

to_instruction(parameter_map=None, label=None)[código fonte]#

Create an Instruction out of this circuit.

Parâmetros:
  • parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the instruction. If None, existing circuit parameters will also parameterize the instruction.

  • label (str) – Optional gate label.

Retorno:

a composite instruction encapsulating this circuit (can be decomposed back)

Tipo de retorno:

qiskit.circuit.Instruction

toffoli(control_qubit1, control_qubit2, target_qubit)[código fonte]#

Apply CCXGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

Veja também

QuantumCircuit.ccx: the same gate with a different name.

u(theta, phi, lam, qubit)[código fonte]#

Apply UGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

uc(gate_list, q_controls, q_target, up_to_diagonal=False)#

Attach a uniformly controlled gates (also called multiplexed gates) to a circuit.

The decomposition was introduced by Bergholm et al. in https://arxiv.org/pdf/quant-ph/0410066.pdf.

Parâmetros:
  • gate_list (list[ndarray]) – list of two qubit unitaries [U_0,…,U_{2^k-1}], where each single-qubit unitary U_i is a given as a 2*2 array

  • q_controls (QuantumRegister|list[(QuantumRegister,int)]) – list of k control qubits. The qubits are ordered according to their significance in the computational basis. For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the unitary U_0 is performed if q[1] and q[2] are in the state zero, U_1 is performed if q[2] is in the state zero and q[1] is in the state one, and so on

  • q_target (QuantumRegister|(QuantumRegister,int)) – target qubit, where we act on with the single-qubit gates.

  • up_to_diagonal (bool) – If set to True, the uniformly controlled gate is decomposed up to a diagonal gate, i.e. a unitary u” is implemented such that there exists a diagonal gate d with u = d.dot(u”), where the unitary u describes the uniformly controlled gate

Retorno:

the uniformly controlled gate is attached to the circuit.

Tipo de retorno:

QuantumCircuit

Levanta:

QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type

ucrx(angle_list, q_controls, q_target)#

Attach a uniformly controlled (also called multiplexed) Rx rotation gate to a circuit.

The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.

Parâmetros:
  • angle_list (List[float]) – list of (real) rotation angles \([a_0,...,a_{2^k-1}]\)

  • q_controls (Sequence[QubitSpecifier]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if q_controls=[q[0],q[1]] (with q = QuantumRegister(2)), the rotation Rx(a_0) is performed if q[0] and q[1] are in the state zero, the rotation Rx(a_1) is performed if q[0] is in the state one and q[1] is in the state zero, and so on

  • q_target (QubitSpecifier) – target qubit, where we act on with the single-qubit rotation gates

Retorno:

the uniformly controlled rotation gate is attached to the circuit.

Tipo de retorno:

QuantumCircuit

Levanta:

QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type

ucry(angle_list, q_controls, q_target)#

Attach a uniformly controlled (also called multiplexed) Ry rotation gate to a circuit.

The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.

Parâmetros:
  • angle_list (List[float]) – list of (real) rotation angles \([a_0,...,a_{2^k-1}]\)

  • q_controls (Sequence[QubitSpecifier]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if q_controls=[q[0],q[1]] (with q = QuantumRegister(2)), the rotation Ry(a_0) is performed if q[0] and q[1] are in the state zero, the rotation Ry(a_1) is performed if q[0] is in the state one and q[1] is in the state zero, and so on

  • q_target (QubitSpecifier) – target qubit, where we act on with the single-qubit rotation gates

Retorno:

the uniformly controlled rotation gate is attached to the circuit.

Tipo de retorno:

QuantumCircuit

Levanta:

QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type

ucrz(angle_list, q_controls, q_target)#

Attach a uniformly controlled (also called multiplexed gates) Rz rotation gate to a circuit.

The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.

Parâmetros:
  • angle_list (List[float]) – list of (real) rotation angles \([a_0,...,a_{2^k-1}]\)

  • q_controls (Sequence[QubitSpecifier]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if q_controls=[q[0],q[1]] (with q = QuantumRegister(2)), the rotation Rx(a_0) is performed if q[0] and q[1] are in the state zero, the rotation Rx(a_1) is performed if q[0] is in the state one and q[1] is in the state zero, and so on

  • q_target (QubitSpecifier) – target qubit, where we act on with the single-qubit rotation gates

Retorno:

the uniformly controlled rotation gate is attached to the circuit.

Tipo de retorno:

QuantumCircuit

Levanta:

QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type

unitary(obj, qubits, label=None)#

Apply unitary gate specified by obj to qubits.

Parâmetros:
  • obj (matrix or Operator) – unitary operator.

  • qubits (Union[int, Tuple[int]]) – The circuit qubits to apply the transformation to.

  • label (str) – unitary name for backend [Default: None].

Retorno:

The quantum circuit.

Tipo de retorno:

QuantumCircuit

Levanta:

ExtensionError – if input data is not an N-qubit unitary operator.

Example

Apply a gate specified by a unitary matrix to a quantum circuit

from qiskit import QuantumCircuit
matrix = [[0, 0, 0, 1],
          [0, 0, 1, 0],
          [1, 0, 0, 0],
          [0, 1, 0, 0]]
circuit = QuantumCircuit(2)
circuit.unitary(matrix, [0, 1])
while_loop(condition: tuple[ClassicalRegister | Clbit, int] | expr.Expr, body: None, qubits: None, clbits: None, *, label: str | None) qiskit.circuit.controlflow.while_loop.WhileLoopContext[código fonte]#
while_loop(condition: tuple[ClassicalRegister | Clbit, int] | expr.Expr, body: QuantumCircuit, qubits: Sequence[Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]], clbits: Sequence[Clbit | ClassicalRegister | int | slice | Sequence[Clbit | int]], *, label: str | None) InstructionSet

Create a while loop on this circuit.

There are two forms for calling this function. If called with all its arguments (with the possible exception of label), it will create a WhileLoopOp with the given body. If body (and qubits and clbits) are not passed, then this acts as a context manager, which will automatically build a WhileLoopOp when the scope finishes. In this form, you do not need to keep track of the qubits or clbits you are using, because the scope will handle it for you.

Example usage:

from qiskit.circuit import QuantumCircuit, Clbit, Qubit
bits = [Qubit(), Qubit(), Clbit()]
qc = QuantumCircuit(bits)

with qc.while_loop((bits[2], 0)):
    qc.h(0)
    qc.cx(0, 1)
    qc.measure(0, 0)
Parâmetros:
  • condition (Tuple[Union[ClassicalRegister, Clbit], int]) – An equality condition to be checked prior to executing body. The left-hand side of the condition must be a ClassicalRegister or a Clbit, and the right-hand side must be an integer or boolean.

  • body (Optional[QuantumCircuit]) – The loop body to be repeatedly executed. Omit this to use the context-manager mode.

  • qubits (Optional[Sequence[Qubit]]) – The circuit qubits over which the loop body should be run. Omit this to use the context-manager mode.

  • clbits (Optional[Sequence[Clbit]]) – The circuit clbits over which the loop body should be run. Omit this to use the context-manager mode.

  • label (Optional[str]) – The string label of the instruction in the circuit.

Retorno:

If used in context-manager mode, then this should be used as a with resource, which will infer the block content and operands on exit. If the full form is used, then this returns a handle to the instructions created.

Tipo de retorno:

InstructionSet or WhileLoopContext

Levanta:

CircuitError – if an incorrect calling convention is used.

width()[código fonte]#

Return number of qubits plus clbits in circuit.

Retorno:

Width of circuit.

Tipo de retorno:

int

x(qubit, label=None)[código fonte]#

Apply XGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:
  • qubit (QubitSpecifier) – The qubit(s) to apply the gate to.

  • label (str | None) – The string label of the gate in the circuit.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

y(qubit)[código fonte]#

Apply YGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:

qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet

z(qubit)[código fonte]#

Apply ZGate.

For the full matrix form of this gate, see the underlying gate documentation.

Parâmetros:

qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.

Retorno:

A handle to the instructions created.

Tipo de retorno:

InstructionSet