LieTrotter#
- class qiskit.synthesis.LieTrotter(reps=1, insert_barriers=False, cx_structure='chain', atomic_evolution=None)[código fonte]#
Bases:
ProductFormula
The Lie-Trotter product formula.
The Lie-Trotter formula approximates the exponential of two non-commuting operators with products of their exponentials up to a second order error:
\[e^{A + B} \approx e^{A}e^{B}.\]In this implementation, the operators are provided as sum terms of a Pauli operator. For example, we approximate
\[e^{-it(XX + ZZ)} = e^{-it XX}e^{-it ZZ} + \mathcal{O}(t^2).\]References
[1]: D. Berry, G. Ahokas, R. Cleve and B. Sanders, «Efficient quantum algorithms for simulating sparse Hamiltonians» (2006). arXiv:quant-ph/0508139 [2]: N. Hatano and M. Suzuki, «Finding Exponential Product Formulas of Higher Orders» (2005). arXiv:math-ph/0506007
- Parâmetros:
reps (int) – The number of time steps.
insert_barriers (bool) – Whether to insert barriers between the atomic evolutions.
cx_structure (str) – How to arrange the CX gates for the Pauli evolutions, can be «chain», where next neighbor connections are used, or «fountain», where all qubits are connected to one.
atomic_evolution (Callable[[Pauli | SparsePauliOp, float], QuantumCircuit] | None) – A function to construct the circuit for the evolution of single Pauli string. Per default, a single Pauli evolution is decomposed in a CX chain and a single qubit Z rotation.
Attributes
- settings#
Return the settings in a dictionary, which can be used to reconstruct the object.
- Retorno:
A dictionary containing the settings of this product formula.
- Levanta:
NotImplementedError – If a custom atomic evolution is set, which cannot be serialized.
Methods
- synthesize(evolution)[código fonte]#
Synthesize an
qiskit.circuit.library.PauliEvolutionGate
.- Parâmetros:
evolution (PauliEvolutionGate) – The evolution gate to synthesize.
- Retorno:
A circuit implementing the evolution.
- Tipo de retorno: