DensityMatrix#

class qiskit.quantum_info.DensityMatrix(data, dims=None)[código fonte]#

Bases: QuantumState, TolerancesMixin

DensityMatrix class

Initialize a density matrix object.

Parâmetros:
  • or (data (np.ndarray or list or matrix_like or QuantumCircuit) – qiskit.circuit.Instruction): A statevector, quantum instruction or an object with a to_operator or to_matrix method from which the density matrix can be constructed. If a vector the density matrix is constructed as the projector of that vector. If a quantum instruction, the density matrix is constructed by assuming all qubits are initialized in the zero state.

  • dims (int or tuple or list) – Optional. The subsystem dimension of the state (See additional information).

Levanta:

QiskitError – if input data is not valid.

Additional Information:

The dims kwarg can be None, an integer, or an iterable of integers.

  • Iterable – the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.

  • Int or None – the leading dimension of the input matrix specifies the total dimension of the density matrix. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.

Attributes

atol = 1e-08#
data#

Return data.

dim#

Return total state dimension.

num_qubits#

Return the number of qubits if a N-qubit state or None otherwise.

rtol = 1e-05#
settings#

Return settings.

Methods

conjugate()[código fonte]#

Return the conjugate of the density matrix.

copy()#

Make a copy of current operator.

dims(qargs=None)#

Return tuple of input dimension for specified subsystems.

draw(output=None, **drawer_args)[código fonte]#

Return a visualization of the Statevector.

repr: ASCII TextMatrix of the state’s __repr__.

text: ASCII TextMatrix that can be printed in the console.

latex: An IPython Latex object for displaying in Jupyter Notebooks.

latex_source: Raw, uncompiled ASCII source to generate array using LaTeX.

qsphere: Matplotlib figure, rendering of density matrix using plot_state_qsphere().

hinton: Matplotlib figure, rendering of density matrix using plot_state_hinton().

bloch: Matplotlib figure, rendering of density matrix using plot_bloch_multivector().

Parâmetros:
  • output (str) – Select the output method to use for drawing the state. Valid choices are repr, text, latex, latex_source, qsphere, hinton, or bloch. Default is repr. Default can be changed by adding the line state_drawer = <default> to ~/.qiskit/settings.conf under [default].

  • drawer_args – Arguments to be passed directly to the relevant drawing function or constructor (TextMatrix(), array_to_latex(), plot_state_qsphere(), plot_state_hinton() or plot_bloch_multivector()). See the relevant function under qiskit.visualization for that function’s documentation.

Retorno:

matplotlib.Figure or str or TextMatrix or IPython.display.Latex: Drawing of the Statevector.

Levanta:

ValueError – when an invalid output method is selected.

evolve(other, qargs=None)[código fonte]#

Evolve a quantum state by an operator.

Parâmetros:
  • QuantumChannel (other (Operator or) – or Instruction or Circuit): The operator to evolve by.

  • qargs (list) – a list of QuantumState subsystem positions to apply the operator on.

Retorno:

the output density matrix.

Tipo de retorno:

DensityMatrix

Levanta:

QiskitError – if the operator dimension does not match the specified QuantumState subsystem dimensions.

expand(other)[código fonte]#

Return the tensor product state other ⊗ self.

Parâmetros:

other (DensityMatrix) – a quantum state object.

Retorno:

the tensor product state other ⊗ self.

Tipo de retorno:

DensityMatrix

Levanta:

QiskitError – if other is not a quantum state.

expectation_value(oper, qargs=None)[código fonte]#

Compute the expectation value of an operator.

Parâmetros:
  • oper (Operator) – an operator to evaluate expval.

  • qargs (None or list) – subsystems to apply the operator on.

Retorno:

the expectation value.

Tipo de retorno:

complex

classmethod from_instruction(instruction)[código fonte]#

Return the output density matrix of an instruction.

The statevector is initialized in the state \(|{0,\ldots,0}\rangle\) of the same number of qubits as the input instruction or circuit, evolved by the input instruction, and the output statevector returned.

Parâmetros:

instruction (qiskit.circuit.Instruction or QuantumCircuit) – instruction or circuit

Retorno:

the final density matrix.

Tipo de retorno:

DensityMatrix

Levanta:

QiskitError – if the instruction contains invalid instructions for density matrix simulation.

static from_int(i, dims)[código fonte]#

Return a computational basis state density matrix.

Parâmetros:
  • i (int) – the basis state element.

  • dims (int or tuple or list) – The subsystem dimensions of the statevector (See additional information).

Retorno:

The computational basis state \(|i\rangle\!\langle i|\).

Tipo de retorno:

DensityMatrix

Additional Information:

The dims kwarg can be an integer or an iterable of integers.

  • Iterable – the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list.

  • Int – the integer specifies the total dimension of the state. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem.

classmethod from_label(label)[código fonte]#

Return a tensor product of Pauli X,Y,Z eigenstates.

Table 13 Single-qubit state labels#

Label

Statevector

"0"

\(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\)

"1"

\(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\)

"+"

\(\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\)

"-"

\(\frac{1}{2}\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}\)

"r"

\(\frac{1}{2}\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}\)

"l"

\(\frac{1}{2}\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}\)

Parâmetros:

label (string) – a eigenstate string ket label (see table for allowed values).

Retorno:

The N-qubit basis state density matrix.

Tipo de retorno:

DensityMatrix

Levanta:

QiskitError – if the label contains invalid characters, or the length of the label is larger than an explicitly specified num_qubits.

is_valid(atol=None, rtol=None)[código fonte]#

Return True if trace 1 and positive semidefinite.

measure(qargs=None)#

Measure subsystems and return outcome and post-measure state.

Note that this function uses the QuantumStates internal random number generator for sampling the measurement outcome. The RNG seed can be set using the seed() method.

Parâmetros:

qargs (list or None) – subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).

Retorno:

the pair (outcome, state) where outcome is the

measurement outcome string label, and state is the collapsed post-measurement state for the corresponding outcome.

Tipo de retorno:

tuple

partial_transpose(qargs)[código fonte]#

Return partially transposed density matrix.

Parâmetros:

qargs (list) – The subsystems to be transposed.

Retorno:

The partially transposed density matrix.

Tipo de retorno:

DensityMatrix

probabilities(qargs=None, decimals=None)[código fonte]#

Return the subsystem measurement probability vector.

Measurement probabilities are with respect to measurement in the computation (diagonal) basis.

Parâmetros:
  • qargs (None or list) – subsystems to return probabilities for, if None return for all subsystems (Default: None).

  • decimals (None or int) – the number of decimal places to round values. If None no rounding is done (Default: None).

Retorno:

The Numpy vector array of probabilities.

Tipo de retorno:

np.array

Examples

Consider a 2-qubit product state \(\rho=\rho_1\otimes\rho_0\) with \(\rho_1=|+\rangle\!\langle+|\), \(\rho_0=|0\rangle\!\langle0|\).

from qiskit.quantum_info import DensityMatrix

rho = DensityMatrix.from_label('+0')

# Probabilities for measuring both qubits
probs = rho.probabilities()
print('probs: {}'.format(probs))

# Probabilities for measuring only qubit-0
probs_qubit_0 = rho.probabilities([0])
print('Qubit-0 probs: {}'.format(probs_qubit_0))

# Probabilities for measuring only qubit-1
probs_qubit_1 = rho.probabilities([1])
print('Qubit-1 probs: {}'.format(probs_qubit_1))
probs: [0.5 0.  0.5 0. ]
Qubit-0 probs: [1. 0.]
Qubit-1 probs: [0.5 0.5]

We can also permute the order of qubits in the qargs list to change the qubit position in the probabilities output

from qiskit.quantum_info import DensityMatrix

rho = DensityMatrix.from_label('+0')

# Probabilities for measuring both qubits
probs = rho.probabilities([0, 1])
print('probs: {}'.format(probs))

# Probabilities for measuring both qubits
# but swapping qubits 0 and 1 in output
probs_swapped = rho.probabilities([1, 0])
print('Swapped probs: {}'.format(probs_swapped))
probs: [0.5 0.  0.5 0. ]
Swapped probs: [0.5 0.5 0.  0. ]
probabilities_dict(qargs=None, decimals=None)#

Return the subsystem measurement probability dictionary.

Measurement probabilities are with respect to measurement in the computation (diagonal) basis.

This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished.

Parâmetros:
  • qargs (None or list) – subsystems to return probabilities for, if None return for all subsystems (Default: None).

  • decimals (None or int) – the number of decimal places to round values. If None no rounding is done (Default: None).

Retorno:

The measurement probabilities in dict (ket) form.

Tipo de retorno:

dict

purity()[código fonte]#

Return the purity of the quantum state.

reset(qargs=None)[código fonte]#

Reset state or subsystems to the 0-state.

Parâmetros:

qargs (list or None) – subsystems to reset, if None all subsystems will be reset to their 0-state (Default: None).

Retorno:

the reset state.

Tipo de retorno:

DensityMatrix

Additional Information:

If all subsystems are reset this will return the ground state on all subsystems. If only a some subsystems are reset this function will perform evolution by the reset SuperOp of the reset subsystems.

reverse_qargs()[código fonte]#

Return a DensityMatrix with reversed subsystem ordering.

For a tensor product state this is equivalent to reversing the order of tensor product subsystems. For a density matrix \(\rho = \rho_{n-1} \otimes ... \otimes \rho_0\) the returned state will be \(\rho_0 \otimes ... \otimes \rho_{n-1}\).

Retorno:

the state with reversed subsystem order.

Tipo de retorno:

DensityMatrix

sample_counts(shots, qargs=None)#

Sample a dict of qubit measurement outcomes in the computational basis.

Parâmetros:
  • shots (int) – number of samples to generate.

  • qargs (None or list) – subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).

Retorno:

sampled counts dictionary.

Tipo de retorno:

Counts

Additional Information:

This function samples measurement outcomes using the measure probabilities() for the current state and qargs. It does not actually implement the measurement so the current state is not modified.

The seed for random number generator used for sampling can be set to a fixed value by using the stats seed() method.

sample_memory(shots, qargs=None)#

Sample a list of qubit measurement outcomes in the computational basis.

Parâmetros:
  • shots (int) – number of samples to generate.

  • qargs (None or list) – subsystems to sample measurements for, if None sample measurement of all subsystems (Default: None).

Retorno:

list of sampled counts if the order sampled.

Tipo de retorno:

np.array

Additional Information:

This function samples measurement outcomes using the measure probabilities() for the current state and qargs. It does not actually implement the measurement so the current state is not modified.

The seed for random number generator used for sampling can be set to a fixed value by using the stats seed() method.

seed(value=None)#

Set the seed for the quantum state RNG.

tensor(other)[código fonte]#

Return the tensor product state self ⊗ other.

Parâmetros:

other (DensityMatrix) – a quantum state object.

Retorno:

the tensor product operator self ⊗ other.

Tipo de retorno:

DensityMatrix

Levanta:

QiskitError – if other is not a quantum state.

to_dict(decimals=None)[código fonte]#

Convert the density matrix to dictionary form.

This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished.

Parâmetros:

decimals (None or int) – the number of decimal places to round values. If None no rounding is done (Default: None).

Retorno:

the dictionary form of the DensityMatrix.

Tipo de retorno:

dict

Examples

The ket-form of a 2-qubit density matrix \(rho = |-\rangle\!\langle -|\otimes |0\rangle\!\langle 0|\)

from qiskit.quantum_info import DensityMatrix

rho = DensityMatrix.from_label('-0')
print(rho.to_dict())
{
    '00|00': (0.4999999999999999+0j),
    '10|00': (-0.4999999999999999-0j),
    '00|10': (-0.4999999999999999+0j),
    '10|10': (0.4999999999999999+0j)
}

For non-qubit subsystems the integer range can go from 0 to 9. For example in a qutrit system

import numpy as np
from qiskit.quantum_info import DensityMatrix

mat = np.zeros((9, 9))
mat[0, 0] = 0.25
mat[3, 3] = 0.25
mat[6, 6] = 0.25
mat[-1, -1] = 0.25
rho = DensityMatrix(mat, dims=(3, 3))
print(rho.to_dict())
{'00|00': (0.25+0j), '10|10': (0.25+0j), '20|20': (0.25+0j), '22|22': (0.25+0j)}

For large subsystem dimensions delimiters are required. The following example is for a 20-dimensional system consisting of a qubit and 10-dimensional qudit.

import numpy as np
from qiskit.quantum_info import DensityMatrix

mat = np.zeros((2 * 10, 2 * 10))
mat[0, 0] = 0.5
mat[-1, -1] = 0.5
rho = DensityMatrix(mat, dims=(2, 10))
print(rho.to_dict())
{'00|00': (0.5+0j), '91|91': (0.5+0j)}
to_operator()[código fonte]#

Convert to Operator

Tipo de retorno:

Operator

to_statevector(atol=None, rtol=None)[código fonte]#

Return a statevector from a pure density matrix.

Parâmetros:
  • atol (float) – Absolute tolerance for checking operation validity.

  • rtol (float) – Relative tolerance for checking operation validity.

Retorno:

The pure density matrix’s corresponding statevector.

Corresponds to the eigenvector of the only non-zero eigenvalue.

Tipo de retorno:

Statevector

Levanta:

QiskitError – if the state is not pure.

trace()[código fonte]#

Return the trace of the density matrix.