CNOTDihedral#
- class qiskit.quantum_info.CNOTDihedral(data=None, num_qubits=None, validate=True)[código fonte]#
Bases:
BaseOperator
,AdjointMixin
An N-qubit operator from the CNOT-Dihedral group.
The CNOT-Dihedral group is generated by the quantum gates,
CXGate
,TGate
, andXGate
.Representation
An \(N\)-qubit CNOT-Dihedral operator is stored as an affine function and a phase polynomial, based on the convention in references [1, 2].
The affine function consists of an \(N \times N\) invertible binary matrix, and an \(N\) binary vector.
The phase polynomial is a polynomial of degree at most 3, in \(N\) variables, whose coefficients are in the ring Z_8 with 8 elements.
from qiskit import QuantumCircuit from qiskit.quantum_info import CNOTDihedral circ = QuantumCircuit(3) circ.cx(0, 1) circ.x(2) circ.t(1) circ.t(1) circ.t(1) elem = CNOTDihedral(circ) # Print the CNOTDihedral element print(elem)
phase polynomial = 0 + 3*x_0 + 3*x_1 + 2*x_0*x_1 affine function = (x_0,x_0 + x_1,x_2 + 1)
Circuit Conversion
CNOTDihedral operators can be initialized from circuits containing only the following gates:
IGate
,XGate
,YGate
,ZGate
,TGate
,TdgGate
SGate
,SdgGate
,CXGate
,CZGate
,CSGate
,CSdgGate
,SwapGate
,CCZGate
. They can be converted back into aQuantumCircuit
, orGate
object using theto_circuit()
orto_instruction()
methods respectively. Note that this decomposition is not necessarily optimal in terms of number of gates if the number of qubits is more than two.CNOTDihedral operators can also be converted to
Operator
objects using theto_operator()
method. This is done via decomposing to a circuit, and then simulating the circuit as a unitary operator.- References:
Shelly Garion and Andrew W. Cross, Synthesis of CNOT-Dihedral circuits with optimal number of two qubit gates, Quantum 4(369), 2020
Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta, Scalable randomised benchmarking of non-Clifford gates, npj Quantum Inf 2, 16012 (2016).
Initialize a CNOTDihedral operator object.
- Parâmetros:
data (CNOTDihedral or QuantumCircuit or Instruction) – Optional, operator to initialize.
num_qubits (int) – Optional, initialize an empty CNOTDihedral operator.
validate (bool) – if True, validates the CNOTDihedral element.
- Levanta:
QiskitError – if the type is invalid.
QiskitError – if validate=True and the CNOTDihedral element is invalid.
Attributes
- dim#
Return tuple (input_shape, output_shape).
- name#
Unique string identifier for operation type.
- num_clbits#
Number of classical bits.
- num_qubits#
Return the number of qubits if a N-qubit operator or None otherwise.
- qargs#
Return the qargs for the operator.
Methods
- adjoint()[código fonte]#
Return the adjoint of the Operator.
- compose(other, qargs=None, front=False)[código fonte]#
Return the operator composition with another CNOTDihedral.
- Parâmetros:
other (CNOTDihedral) – a CNOTDihedral object.
qargs (list or None) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
front (bool) – If True compose using right operator multiplication, instead of left multiplication [default: False].
- Retorno:
The composed CNOTDihedral.
- Tipo de retorno:
- Levanta:
QiskitError – if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
Nota
Composition (
&
) by default is defined as left matrix multiplication for matrix operators, while@
(equivalent todot()
) is defined as right matrix multiplication. That is thatA & B == A.compose(B)
is equivalent toB @ A == B.dot(A)
whenA
andB
are of the same type.Setting the
front=True
kwarg changes this to right matrix multiplication and is equivalent to thedot()
methodA.dot(B) == A.compose(B, front=True)
.
- conjugate()[código fonte]#
Return the conjugate of the CNOTDihedral.
- copy()#
Make a deep copy of current operator.
- dot(other, qargs=None)#
Return the right multiplied operator self * other.
- Parâmetros:
- Retorno:
The right matrix multiplied Operator.
- Tipo de retorno:
Nota
The dot product can be obtained using the
@
binary operator. Hencea.dot(b)
is equivalent toa @ b
.
- expand(other)[código fonte]#
Return the reverse-order tensor product with another CNOTDihedral.
- Parâmetros:
other (CNOTDihedral) – a CNOTDihedral object.
- Retorno:
- the tensor product \(b \otimes a\), where \(a\)
is the current CNOTDihedral, and \(b\) is the other CNOTDihedral.
- Tipo de retorno:
- input_dims(qargs=None)#
Return tuple of input dimension for specified subsystems.
- output_dims(qargs=None)#
Return tuple of output dimension for specified subsystems.
- power(n)#
Return the compose of a operator with itself n times.
- Parâmetros:
n (int) – the number of times to compose with self (n>0).
- Retorno:
the n-times composed operator.
- Tipo de retorno:
- Levanta:
QiskitError – if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
- reshape(input_dims=None, output_dims=None, num_qubits=None)#
Return a shallow copy with reshaped input and output subsystem dimensions.
- Parâmetros:
input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
- Retorno:
returns self with reshaped input and output dimensions.
- Tipo de retorno:
BaseOperator
- Levanta:
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
- tensor(other)[código fonte]#
Return the tensor product with another CNOTDihedral.
- Parâmetros:
other (CNOTDihedral) – a CNOTDihedral object.
- Retorno:
- the tensor product \(a \otimes b\), where \(a\)
is the current CNOTDihedral, and \(b\) is the other CNOTDihedral.
- Tipo de retorno:
Nota
The tensor product can be obtained using the
^
binary operator. Hencea.tensor(b)
is equivalent toa ^ b
.
- to_circuit()[código fonte]#
Return a QuantumCircuit implementing the CNOT-Dihedral element.
- Retorno:
a circuit implementation of the CNOTDihedral object.
- Tipo de retorno:
References
Shelly Garion and Andrew W. Cross, Synthesis of CNOT-Dihedral circuits with optimal number of two qubit gates, Quantum 4(369), 2020
Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta, Scalable randomised benchmarking of non-Clifford gates, npj Quantum Inf 2, 16012 (2016).
- to_instruction()[código fonte]#
Return a Gate instruction implementing the CNOTDihedral object.
- to_matrix()[código fonte]#
Convert operator to Numpy matrix.
- to_operator()[código fonte]#
Convert to an Operator object.
- Tipo de retorno:
- transpose()[código fonte]#
Return the transpose of the CNOTDihedral.