EfficientSU2#
- class qiskit.circuit.library.EfficientSU2(num_qubits=None, su2_gates=None, entanglement='reverse_linear', reps=3, skip_unentangled_qubits=False, skip_final_rotation_layer=False, parameter_prefix='ΞΈ', insert_barriers=False, initial_state=None, name='EfficientSU2', flatten=None)[cΓ³digo fonte]#
Bases:
TwoLocal
The hardware efficient SU(2) 2-local circuit.
The
EfficientSU2
circuit consists of layers of single qubit operations spanned by SU(2) and \(CX\) entanglements. This is a heuristic pattern that can be used to prepare trial wave functions for variational quantum algorithms or classification circuit for machine learning.SU(2) stands for special unitary group of degree 2, its elements are \(2 \times 2\) unitary matrices with determinant 1, such as the Pauli rotation gates.
On 3 qubits and using the Pauli \(Y\) and \(Z\) su2_gates as single qubit gates, the hardware efficient SU(2) circuit is represented by:
ββββββββββββββββββββββββ β β β ββββββββββββββββββββββββββ β€ RY(ΞΈ[0]) ββ€ RZ(ΞΈ[3]) ββββββββββββ βββββ ... ββββ€ RY(ΞΈ[12]) ββ€ RZ(ΞΈ[15]) β ββββββββββββ€ββββββββββββ€ β βββ΄ββ β β βββββββββββββ€βββββββββββββ€ β€ RY(ΞΈ[1]) ββ€ RZ(ΞΈ[4]) βββββββ βββ€ X ββββ ... ββββ€ RY(ΞΈ[13]) ββ€ RZ(ΞΈ[16]) β ββββββββββββ€ββββββββββββ€ β βββ΄βββββββ β β βββββββββββββ€βββββββββββββ€ β€ RY(ΞΈ[2]) ββ€ RZ(ΞΈ[5]) βββββ€ X βββββββββ ... ββββ€ RY(ΞΈ[14]) ββ€ RZ(ΞΈ[17]) β ββββββββββββββββββββββββ β βββββ β β ββββββββββββββββββββββββββ
See
RealAmplitudes
for more detail on the possible arguments and options such as skipping unentanglement qubits, which apply here too.Examples
>>> circuit = EfficientSU2(3, reps=1) >>> print(circuit) ββββββββββββββββββββββββ ββββββββββββββββββββββββ q_0: β€ RY(ΞΈ[0]) ββ€ RZ(ΞΈ[3]) ββββ βββββ βββ€ RY(ΞΈ[6]) ββ€ RZ(ΞΈ[9]) ββββββββββββββ ββββββββββββ€ββββββββββββ€βββ΄ββ β ββββββββββββββββββββββββ€βββββββββββββ q_1: β€ RY(ΞΈ[1]) ββ€ RZ(ΞΈ[4]) ββ€ X ββββΌββββββββ βββββββ€ RY(ΞΈ[7]) ββ€ RZ(ΞΈ[10]) β ββββββββββββ€ββββββββββββ€ββββββββ΄ββ βββ΄ββ ββββββββββββ€βββββββββββββ€ q_2: β€ RY(ΞΈ[2]) ββ€ RZ(ΞΈ[5]) βββββββ€ X βββββ€ X ββββββ€ RY(ΞΈ[8]) ββ€ RZ(ΞΈ[11]) β ββββββββββββββββββββββββ βββββ βββββ βββββββββββββββββββββββββ
>>> ansatz = EfficientSU2(4, su2_gates=['rx', 'y'], entanglement='circular', reps=1) >>> qc = QuantumCircuit(4) # create a circuit and append the RY variational form >>> qc.compose(ansatz, inplace=True) >>> qc.draw() ββββββββββββββββββββββ ββββββββββββ βββββ q_0: β€ RX(ΞΈ[0]) ββ€ Y ββ€ X ββββ βββ€ RX(ΞΈ[4]) βββββ€ Y ββββββββββββββββββββββ ββββββββββββ€βββββ€βββ¬βββββ΄ββββββββββββββββββ΄ββββ΄ββββ βββββ q_1: β€ RX(ΞΈ[1]) ββ€ Y ββββΌβββ€ X βββββββ βββββββ€ RX(ΞΈ[5]) βββββ€ Y ββββββββββ ββββββββββββ€βββββ€ β βββββ βββ΄ββ ββββββββββββββββ΄ββββ΄βββββββββ q_2: β€ RX(ΞΈ[2]) ββ€ Y ββββΌβββββββββββ€ X βββββββββββ βββββββ€ RX(ΞΈ[6]) ββ€ Y β ββββββββββββ€βββββ€ β βββββ βββ΄ββ ββββββββββββ€βββββ€ q_3: β€ RX(ΞΈ[3]) ββ€ Y ββββ βββββββββββββββββββββββ€ X ββββββ€ RX(ΞΈ[7]) ββ€ Y β βββββββββββββββββ βββββ βββββββββββββββββ
- ParΓ’metros:
num_qubits (int | None) β The number of qubits of the EfficientSU2 circuit.
reps (int) β Specifies how often the structure of a rotation layer followed by an entanglement layer is repeated.
su2_gates (str | type | qiskit.circuit.Instruction | QuantumCircuit | list[str | type | qiskit.circuit.Instruction | QuantumCircuit] | None) β The SU(2) single qubit gates to apply in single qubit gate layers. If only one gate is provided, the same gate is applied to each qubit. If a list of gates is provided, all gates are applied to each qubit in the provided order.
entanglement (str | list[list[int]] | Callable[[int], list[int]]) β Specifies the entanglement structure. Can be a string (βfullβ, βlinearβ , βreverse_linearβ, βcircularβ or βscaβ), a list of integer-pairs specifying the indices of qubits entangled with one another, or a callable returning such a list provided with the index of the entanglement layer. Default to βreverse_linearβ entanglement. Note that βreverse_linearβ entanglement provides the same unitary as βfullβ with fewer entangling gates. See the Examples section of
TwoLocal
for more detail.initial_state (QuantumCircuit | None) β A QuantumCircuit object to prepend to the circuit.
skip_unentangled_qubits (bool) β If True, the single qubit gates are only applied to qubits that are entangled with another qubit. If False, the single qubit gates are applied to each qubit in the Ansatz. Defaults to False.
skip_final_rotation_layer (bool) β If False, a rotation layer is added at the end of the ansatz. If True, no rotation layer is added.
parameter_prefix (str) β The parameterized gates require a parameter to be defined, for which we use
ParameterVector
.insert_barriers (bool) β If True, barriers are inserted in between each layer. If False, no barriers are inserted.
flatten (bool | None) β Set this to
True
to output a flat circuit instead of nesting it inside multiple layers of gate objects. By default currently the contents of the output circuit will be wrapped in nested objects for cleaner visualization. However, if youβre using this circuit for anything besides visualization its strongly recommended to set this flag toTrue
to avoid a large performance overhead for parameter binding.
Attributes
- ancillas#
Returns a list of ancilla bits in the order that the registers were added.
- calibrations#
Return calibration dictionary.
The custom pulse definition of a given gate is of the form
{'gate_name': {(qubits, params): schedule}}
- clbits#
Returns a list of classical bits in the order that the registers were added.
- data#
- entanglement#
Get the entanglement strategy.
- Retorno:
The entanglement strategy, see
get_entangler_map()
for more detail on how the format is interpreted.
- entanglement_blocks#
The blocks in the entanglement layers.
- Retorno:
The blocks in the entanglement layers.
- extension_lib = 'include "qelib1.inc";'#
- flatten#
Returns whether the circuit is wrapped in nested gates/instructions or flattened.
- global_phase#
Return the global phase of the circuit in radians.
- header = 'OPENQASM 2.0;'#
- initial_state#
Return the initial state that is added in front of the n-local circuit.
- Retorno:
The initial state.
- insert_barriers#
If barriers are inserted in between the layers or not.
- Retorno:
True
, if barriers are inserted in between the layers,False
if not.
- instances = 127#
- layout#
Return any associated layout information about the circuit
This attribute contains an optional
TranspileLayout
object. This is typically set on the output fromtranspile()
orPassManager.run()
to retain information about the permutations caused on the input circuit by transpilation.There are two types of permutations caused by the
transpile()
function, an initial layout which permutes the qubits based on the selected physical qubits on theTarget
, and a final layout which is an output permutation caused bySwapGate
s inserted during routing.
- metadata#
The user provided metadata associated with the circuit.
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
- num_ancillas#
Return the number of ancilla qubits.
- num_clbits#
Return number of classical bits.
- num_layers#
Return the number of layers in the n-local circuit.
- Retorno:
The number of layers in the circuit.
- num_parameters#
- num_parameters_settable#
The number of total parameters that can be set to distinct values.
This does not change when the parameters are bound or exchanged for same parameters, and therefore is different from
num_parameters
which counts the number of uniqueParameter
objects currently in the circuit.- Retorno:
The number of parameters originally available in the circuit.
Nota
This quantity does not require the circuit to be built yet.
- num_qubits#
Returns the number of qubits in this circuit.
- Retorno:
The number of qubits.
- op_start_times#
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
- Retorno:
List of integers representing instruction start times. The index corresponds to the index of instruction in
QuantumCircuit.data
.- Levanta:
AttributeError β When circuit is not scheduled.
- ordered_parameters#
The parameters used in the underlying circuit.
This includes float values and duplicates.
Examples
>>> # prepare circuit ... >>> print(nlocal) βββββββββββββββββββββββββββββββββββββββββββββ q_0: β€ Ry(1) ββ€ Ry(ΞΈ[1]) ββ€ Ry(ΞΈ[1]) ββ€ Ry(ΞΈ[3]) β βββββββββββββββββββββββββββββββββββββββββββββ >>> nlocal.parameters {Parameter(ΞΈ[1]), Parameter(ΞΈ[3])} >>> nlocal.ordered_parameters [1, Parameter(ΞΈ[1]), Parameter(ΞΈ[1]), Parameter(ΞΈ[3])]
- Retorno:
The parameters objects used in the circuit.
- parameter_bounds#
Return the parameter bounds.
- Retorno:
The parameter bounds.
- parameters#
- preferred_init_points#
The initial points for the parameters. Can be stored as initial guess in optimization.
- Retorno:
The initial values for the parameters, or None, if none have been set.
- prefix = 'circuit'#
- qregs: list[QuantumRegister]#
A list of the quantum registers associated with the circuit.
- qubits#
Returns a list of quantum bits in the order that the registers were added.
- reps#
The number of times rotation and entanglement block are repeated.
- Retorno:
The number of repetitions.
- rotation_blocks#
The blocks in the rotation layers.
- Retorno:
The blocks in the rotation layers.