StabilizerTable#
- class qiskit.quantum_info.StabilizerTable(data, phase=None)[código fonte]#
Bases:
PauliTable
,AdjointMixin
DEPRECATED: Symplectic representation of a list Stabilizer matrices.
Symplectic Representation
The symplectic representation of a single-qubit Stabilizer matrix is a pair of boolean values \([x, z]\) and a boolean phase p such that the Stabilizer matrix is given by \(S = (-1)^p \sigma_z^z.\sigma_x^x\). The correspondence between labels, symplectic representation, stabilizer matrices, and Pauli matrices for the single-qubit case is shown in the following table.
Table 8 Table 1: Stabilizer Representations# Label
Phase
Symplectic
Matrix
Pauli
"+I"
0
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
\(I\)
"-I"
1
\([0, 0]\)
\(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)
\(-I\)
"X"
0
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
\(X\)
"-X"
1
\([1, 0]\)
\(\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}\)
\(-X\)
"Y"
0
\([1, 1]\)
\(\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\)
\(iY\)
"-Y"
1
\([1, 1]\)
\(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\)
\(-iY\)
"Z"
0
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
\(Z\)
"-Z"
1
\([0, 1]\)
\(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\)
\(-Z\)
Internally this is stored as a length N boolean phase vector \([p_{N-1}, ..., p_{0}]\) and a
PauliTable
\(M \times 2N\) boolean matrix:\[\begin{split}\left(\begin{array}{ccc|ccc} x_{0,0} & ... & x_{0,N-1} & z_{0,0} & ... & z_{0,N-1} \\ x_{1,0} & ... & x_{1,N-1} & z_{1,0} & ... & z_{1,N-1} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ x_{M-1,0} & ... & x_{M-1,N-1} & z_{M-1,0} & ... & z_{M-1,N-1} \end{array}\right)\end{split}\]where each row is a block vector \([X_i, Z_i]\) with \(X_i = [x_{i,0}, ..., x_{i,N-1}]\), \(Z_i = [z_{i,0}, ..., z_{i,N-1}]\) is the symplectic representation of an N-qubit Pauli. This representation is based on reference [1].
StabilizerTable’s can be created from a list of labels using
from_labels()
, and converted to a list of labels or a list of matrices usingto_labels()
andto_matrix()
respectively.Group Product
The product of the stabilizer elements is defined with respect to the matrix multiplication of the matrices in Table 1. In terms of stabilizes labels the dot product group structure is
A.B
I
X
Y
Z
I
I
X
Y
Z
X
X
I
-Z
Y
Y
Y
Z
-I
-X
Z
Z
-Y
X
I
The
dot()
method will return the output forrow.dot(col) = row.col
, while thecompose()
will returnrow.compose(col) = col.row
from the above table.Note that while this dot product is different to the matrix product of the
PauliTable
, it does not change the commutation structure of elements. Hencecommutes:()
will be the same for the same labels.Qubit Ordering
The qubits are ordered in the table such the least significant qubit [x_{i, 0}, z_{i, 0}] is the first element of each of the \(X_i, Z_i\) vector blocks. This is the opposite order to position in string labels or matrix tensor products where the least significant qubit is the right-most string character. For example Pauli
"ZX"
has"X"
on qubit-0 and"Z"
on qubit 1, and would have symplectic vectors \(x=[1, 0]\), \(z=[0, 1]\).Data Access
Subsets of rows can be accessed using the list access
[]
operator and will return a table view of part of the StabilizerTable. The underlying phase vector and Pauli array can be directly accessed using thephase
andarray
properties respectively. The sub-arrays for only the X or Z blocks can be accessed using theX
andZ
properties respectively.The Pauli part of the Stabilizer table can be viewed and accessed as a
PauliTable
object using thepauli
property. Note that this doesn’t copy the underlying array so any changes made to the Pauli table will also change the stabilizer table.Iteration
Rows in the Stabilizer table can be iterated over like a list. Iteration can also be done using the label or matrix representation of each row using the
label_iter()
andmatrix_iter()
methods.References
S. Aaronson, D. Gottesman, Improved Simulation of Stabilizer Circuits, Phys. Rev. A 70, 052328 (2004). arXiv:quant-ph/0406196
Initialize the StabilizerTable.
Obsoleto desde a versão 0.24.0: The class
qiskit.quantum_info.operators.symplectic.stabilizer_table.StabilizerTable
is deprecated as of qiskit-terra 0.24.0. It will be removed no earlier than 3 months after the release date. Instead, use the class PauliList- Parâmetros:
data (array or str or PauliTable) – input PauliTable data.
phase (array or bool or None) – optional phase vector for input data (Default: None).
- Levanta:
QiskitError – if input array or phase vector has an invalid shape.
- Additional Information:
The input array is not copied so multiple Pauli and Stabilizer tables can share the same underlying array.
Attributes
- array#
The underlying boolean array.
- dim#
Return tuple (input_shape, output_shape).
- num_qubits#
Return the number of qubits if a N-qubit operator or None otherwise.
- pauli#
Return PauliTable
- phase#
Return phase vector
- qargs#
Return the qargs for the operator.
- settings#
Return settings.
- size#
The number of Pauli rows in the table.
Methods
- adjoint()#
Return the adjoint of the Operator.
- Tipo de retorno:
Self
- anticommutes_with_all(other)#
Return indexes of rows that commute other.
If other is a multi-row Pauli table the returned vector indexes rows of the current PauliTable that anti-commute with all Pauli’s in other. If no rows satisfy the condition the returned array will be empty.
- Parâmetros:
other (PauliTable) – a single Pauli or multi-row PauliTable.
- Retorno:
index array of the anti-commuting rows.
- Tipo de retorno:
array
- argsort(weight=False)[código fonte]#
Return indices for sorting the rows of the PauliTable.
The default sort method is lexicographic sorting of Paulis by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Stabilizer, where the set of all Pauli’s of a given weight are still ordered lexicographically.
This does not sort based on phase values. It will preserve the original order of rows with the same Pauli’s but different phases.
- Parâmetros:
weight (bool) – optionally sort by weight if True (Default: False).
- Retorno:
the indices for sorting the table.
- Tipo de retorno:
array
- commutes(pauli)#
Return list of commutation properties for each row with a Pauli.
The returned vector is the same length as the size of the table and contains True for rows that commute with the Pauli, and False for the rows that anti-commute.
- Parâmetros:
pauli (PauliTable) – a single Pauli row.
- Retorno:
The boolean vector of which rows commute or anti-commute.
- Tipo de retorno:
array
- Levanta:
QiskitError – if input is not a single Pauli row.
- commutes_with_all(other)#
Return indexes of rows that commute other.
If other is a multi-row Pauli table the returned vector indexes rows of the current PauliTable that commute with all Pauli’s in other. If no rows satisfy the condition the returned array will be empty.
- Parâmetros:
other (PauliTable) – a single Pauli or multi-row PauliTable.
- Retorno:
index array of the commuting rows.
- Tipo de retorno:
array
- compose(other, qargs=None, front=False)[código fonte]#
Return the compose output product of two tables.
This returns the combination of the compose product of all stabilizers in the current table with all stabilizers in the other table.
The individual stabilizer compose product is given by
A.compose(B)
I
X
Y
Z
I
I
X
Y
Z
X
X
I
Z
-Y
Y
Y
-Z
-I
X
Z
Z
Y
-X
I
If front=True the composition will be given by the
dot()
method.Example
from qiskit.quantum_info.operators import StabilizerTable current = StabilizerTable.from_labels(['+I', '-X']) other = StabilizerTable.from_labels(['+X', '-Z']) print(current.compose(other))
StabilizerTable: ['+X', '-Z', '-I', '-Y']
- Parâmetros:
other (StabilizerTable) – another StabilizerTable.
qargs (None or list) – qubits to apply compose product on (Default: None).
front (bool) – If True use dot composition method (default: False).
- Retorno:
the compose outer product table.
- Tipo de retorno:
- Levanta:
QiskitError – if other cannot be converted to a StabilizerTable.
- conjugate()#
Not implemented.
- copy()[código fonte]#
Return a copy of the StabilizerTable.
- delete(ind, qubit=False)[código fonte]#
Return a copy with Stabilizer rows deleted from table.
When deleting qubit columns, qubit-0 is the right-most (largest index) column, and qubit-(N-1) is the left-most (0 index) column of the underlying
X
andZ
arrays.- Parâmetros:
- Retorno:
the resulting table with the entries removed.
- Tipo de retorno:
- Levanta:
QiskitError – if ind is out of bounds for the array size or number of qubits.
- dot(other, qargs=None)[código fonte]#
Return the dot output product of two tables.
This returns the combination of the compose product of all stabilizers in the current table with all stabilizers in the other table.
The individual stabilizer dot product is given by
A.dot(B)
I
X
Y
Z
I
I
X
Y
Z
X
X
I
-Z
Y
Y
Y
Z
-I
-X
Z
Z
-Y
X
I
Example
from qiskit.quantum_info.operators import StabilizerTable current = StabilizerTable.from_labels(['+I', '-X']) other = StabilizerTable.from_labels(['+X', '-Z']) print(current.dot(other))
StabilizerTable: ['+X', '-Z', '-I', '+Y']
- Parâmetros:
other (StabilizerTable) – another StabilizerTable.
qargs (None or list) – qubits to apply dot product on (Default: None).
- Retorno:
the dot outer product table.
- Tipo de retorno:
- Levanta:
QiskitError – if other cannot be converted to a StabilizerTable.
- expand(other)[código fonte]#
Return the expand output product of two tables.
This returns the combination of the tensor product of all stabilizers in the other table with all stabilizers in the current table. The current tables qubits will be the least-significant in the returned table. This is the opposite tensor order to
tensor()
.Example
from qiskit.quantum_info.operators import StabilizerTable current = StabilizerTable.from_labels(['+I', '-X']) other = StabilizerTable.from_labels(['-Y', '+Z']) print(current.expand(other))
StabilizerTable: ['-YI', '+YX', '+ZI', '-ZX']
- Parâmetros:
other (StabilizerTable) – another StabilizerTable.
- Retorno:
the expand outer product table.
- Tipo de retorno:
- Levanta:
QiskitError – if other cannot be converted to a StabilizerTable.
- classmethod from_labels(labels)[código fonte]#
Construct a StabilizerTable from a list of Pauli stabilizer strings.
Pauli Stabilizer string labels are Pauli strings with an optional
"+"
or"-"
character. If there is no +/-sign a + phase is used by default.Table 9 Stabilizer Representations# Label
Phase
Symplectic
Matrix
Pauli
"+I"
0
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
\(I\)
"-I"
1
\([0, 0]\)
\(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)
\(-I\)
"X"
0
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
\(X\)
"-X"
1
\([1, 0]\)
\(\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}\)
\(-X\)
"Y"
0
\([1, 1]\)
\(\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\)
\(iY\)
"-Y"
1
\([1, 1]\)
\(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\)
\(-iY\)
"Z"
0
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
\(Z\)
"-Z"
1
\([0, 1]\)
\(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\)
\(-Z\)
- Parâmetros:
labels (list) – Pauli stabilizer string label(es).
- Retorno:
the constructed StabilizerTable.
- Tipo de retorno:
- Levanta:
QiskitError – If the input list is empty or contains invalid Pauli stabilizer strings.
- input_dims(qargs=None)#
Return tuple of input dimension for specified subsystems.
- insert(ind, value, qubit=False)[código fonte]#
Insert stabilizers’s into the table.
When inserting qubit columns, qubit-0 is the right-most (largest index) column, and qubit-(N-1) is the left-most (0 index) column of the underlying
X
andZ
arrays.- Parâmetros:
ind (int) – index to insert at.
value (StabilizerTable) – values to insert.
qubit (bool) – if True delete qubit columns, otherwise delete Pauli rows (Default: False).
- Retorno:
the resulting table with the entries inserted.
- Tipo de retorno:
- Levanta:
QiskitError – if the insertion index is invalid.
- label_iter()[código fonte]#
Return a label representation iterator.
This is a lazy iterator that converts each row into the string label only as it is used. To convert the entire table to labels use the
to_labels()
method.- Retorno:
label iterator object for the StabilizerTable.
- Tipo de retorno:
LabelIterator
- matrix_iter(sparse=False)[código fonte]#
Return a matrix representation iterator.
This is a lazy iterator that converts each row into the Pauli matrix representation only as it is used. To convert the entire table to matrices use the
to_matrix()
method.- Parâmetros:
sparse (bool) – optionally return sparse CSR matrices if True, otherwise return Numpy array matrices (Default: False)
- Retorno:
matrix iterator object for the StabilizerTable.
- Tipo de retorno:
MatrixIterator
- output_dims(qargs=None)#
Return tuple of output dimension for specified subsystems.
- power(n)#
Return the compose of a operator with itself n times.
- Parâmetros:
n (int) – the number of times to compose with self (n>0).
- Retorno:
the n-times composed operator.
- Tipo de retorno:
- Levanta:
QiskitError – if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
- reshape(input_dims=None, output_dims=None, num_qubits=None)#
Return a shallow copy with reshaped input and output subsystem dimensions.
- Parâmetros:
input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
- Retorno:
returns self with reshaped input and output dimensions.
- Tipo de retorno:
BaseOperator
- Levanta:
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
- sort(weight=False)[código fonte]#
Sort the rows of the table.
The default sort method is lexicographic sorting by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Pauli, where the set of all Pauli’s of a given weight are still ordered lexicographically.
This does not sort based on phase values. It will preserve the original order of rows with the same Pauli’s but different phases.
Consider sorting all a random ordering of all 2-qubit Paulis
from numpy.random import shuffle from qiskit.quantum_info.operators import StabilizerTable # 2-qubit labels labels = ['+II', '+IX', '+IY', '+IZ', '+XI', '+XX', '+XY', '+XZ', '+YI', '+YX', '+YY', '+YZ', '+ZI', '+ZX', '+ZY', '+ZZ', '-II', '-IX', '-IY', '-IZ', '-XI', '-XX', '-XY', '-XZ', '-YI', '-YX', '-YY', '-YZ', '-ZI', '-ZX', '-ZY', '-ZZ'] # Shuffle Labels shuffle(labels) st = StabilizerTable.from_labels(labels) print('Initial Ordering') print(st) # Lexicographic Ordering srt = st.sort() print('Lexicographically sorted') print(srt) # Weight Ordering srt = st.sort(weight=True) print('Weight sorted') print(srt)
Initial Ordering StabilizerTable: [ '-YZ', '+IX', '-ZI', '+II', '-IY', '-II', '-XI', '-IX', '-ZX', '-ZZ', '+XY', '+XZ', '-YX', '-YI', '+ZI', '+ZX', '+ZY', '+IZ', '-ZY', '+YZ', '-IZ', '-XX', '+XI', '+YI', '+XX', '+IY', '+ZZ', '-XY', '-YY', '+YX', '+YY', '-XZ' ] Lexicographically sorted StabilizerTable: [ '+II', '-II', '+IX', '-IX', '-IY', '+IY', '+IZ', '-IZ', '-XI', '+XI', '-XX', '+XX', '+XY', '-XY', '+XZ', '-XZ', '-YI', '+YI', '-YX', '+YX', '-YY', '+YY', '-YZ', '+YZ', '-ZI', '+ZI', '-ZX', '+ZX', '+ZY', '-ZY', '-ZZ', '+ZZ' ] Weight sorted StabilizerTable: [ '+II', '-II', '+IX', '-IX', '-IY', '+IY', '+IZ', '-IZ', '-XI', '+XI', '-YI', '+YI', '-ZI', '+ZI', '-XX', '+XX', '+XY', '-XY', '+XZ', '-XZ', '-YX', '+YX', '-YY', '+YY', '-YZ', '+YZ', '-ZX', '+ZX', '+ZY', '-ZY', '-ZZ', '+ZZ' ]
- Parâmetros:
weight (bool) – optionally sort by weight if True (Default: False).
- Retorno:
a sorted copy of the original table.
- Tipo de retorno:
- tensor(other)[código fonte]#
Return the tensor output product of two tables.
This returns the combination of the tensor product of all stabilizers in the current table with all stabilizers in the other table. The other tables qubits will be the least-significant in the returned table. This is the opposite tensor order to
tensor()
.Example
from qiskit.quantum_info.operators import StabilizerTable current = StabilizerTable.from_labels(['+I', '-X']) other = StabilizerTable.from_labels(['-Y', '+Z']) print(current.tensor(other))
StabilizerTable: ['-IY', '+IZ', '+XY', '-XZ']
- Parâmetros:
other (StabilizerTable) – another StabilizerTable.
- Retorno:
the tensor outer product table.
- Tipo de retorno:
- Levanta:
QiskitError – if other cannot be converted to a StabilizerTable.
- to_labels(array=False)[código fonte]#
Convert a StabilizerTable to a list Pauli stabilizer string labels.
For large StabilizerTables converting using the
array=True
kwarg will be more efficient since it allocates memory for the full Numpy array of labels in advance.Table 10 Stabilizer Representations# Label
Phase
Symplectic
Matrix
Pauli
"+I"
0
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
\(I\)
"-I"
1
\([0, 0]\)
\(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)
\(-I\)
"X"
0
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
\(X\)
"-X"
1
\([1, 0]\)
\(\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}\)
\(-X\)
"Y"
0
\([1, 1]\)
\(\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\)
\(iY\)
"-Y"
1
\([1, 1]\)
\(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\)
\(-iY\)
"Z"
0
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
\(Z\)
"-Z"
1
\([0, 1]\)
\(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\)
\(-Z\)
- to_matrix(sparse=False, array=False)[código fonte]#
Convert to a list or array of Stabilizer matrices.
For large StabilizerTables converting using the
array=True
kwarg will be more efficient since it allocates memory for the full rank-3 Numpy array of matrices in advance.Table 11 Stabilizer Representations# Label
Phase
Symplectic
Matrix
Pauli
"+I"
0
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
\(I\)
"-I"
1
\([0, 0]\)
\(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)
\(-I\)
"X"
0
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
\(X\)
"-X"
1
\([1, 0]\)
\(\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}\)
\(-X\)
"Y"
0
\([1, 1]\)
\(\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\)
\(iY\)
"-Y"
1
\([1, 1]\)
\(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\)
\(-iY\)
"Z"
0
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
\(Z\)
"-Z"
1
\([0, 1]\)
\(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\)
\(-Z\)
- Parâmetros:
- Retorno:
A list of dense Pauli matrices if array=False and sparse=False. list: A list of sparse Pauli matrices if array=False and sparse=True. array: A dense rank-3 array of Pauli matrices if array=True.
- Tipo de retorno:
- transpose()#
Not implemented.
- unique(return_index=False, return_counts=False)[código fonte]#
Return unique stabilizers from the table.
Example
from qiskit.quantum_info.operators import StabilizerTable st = StabilizerTable.from_labels(['+X', '+I', '-I', '-X', '+X', '-X', '+I']) unique = st.unique() print(unique)
StabilizerTable: ['+X', '+I', '-I', '-X']
- Parâmetros:
- Retorno:
- unique
the table of the unique rows.
- unique_indices: np.ndarray, optional
The indices of the first occurrences of the unique values in the original array. Only provided if
return_index
is True.- unique_counts: np.array, optional
The number of times each of the unique values comes up in the original array. Only provided if
return_counts
is True.
- Tipo de retorno: