QuantumCircuit#
- class qiskit.circuit.QuantumCircuit(*regs, name=None, global_phase=0, metadata=None)[Quellcode]#
Bases:
object
Create a new circuit.
A circuit is a list of instructions bound to some registers.
- Parameter:
regs (list(
Register
) or list(int
) or list(list(Bit
))) –The registers to be included in the circuit.
If a list of
Register
objects, represents theQuantumRegister
and/orClassicalRegister
objects to include in the circuit.For example:
QuantumCircuit(QuantumRegister(4))
QuantumCircuit(QuantumRegister(4), ClassicalRegister(3))
QuantumCircuit(QuantumRegister(4, 'qr0'), QuantumRegister(2, 'qr1'))
If a list of
int
, the amount of qubits and/or classical bits to include in the circuit. It can either be a single int for just the number of quantum bits, or 2 ints for the number of quantum bits and classical bits, respectively.For example:
QuantumCircuit(4) # A QuantumCircuit with 4 qubits
QuantumCircuit(4, 3) # A QuantumCircuit with 4 qubits and 3 classical bits
If a list of python lists containing
Bit
objects, a collection ofBit
s to be added to the circuit.
name (str) – the name of the quantum circuit. If not set, an automatically generated string will be assigned.
global_phase (float or ParameterExpression) – The global phase of the circuit in radians.
metadata (dict) – Arbitrary key value metadata to associate with the circuit. This gets stored as free-form data in a dict in the
metadata
attribute. It will not be directly used in the circuit.
- Verursacht:
CircuitError – if the circuit name, if given, is not valid.
Examples
Construct a simple Bell state circuit.
from qiskit import QuantumCircuit qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.measure([0, 1], [0, 1]) qc.draw('mpl')
Construct a 5-qubit GHZ circuit.
from qiskit import QuantumCircuit qc = QuantumCircuit(5) qc.h(0) qc.cx(0, range(1, 5)) qc.measure_all()
Construct a 4-qubit Bernstein-Vazirani circuit using registers.
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qr = QuantumRegister(3, 'q') anc = QuantumRegister(1, 'ancilla') cr = ClassicalRegister(3, 'c') qc = QuantumCircuit(qr, anc, cr) qc.x(anc[0]) qc.h(anc[0]) qc.h(qr[0:3]) qc.cx(qr[0:3], anc[0]) qc.h(qr[0:3]) qc.barrier(qr) qc.measure(qr, cr) qc.draw('mpl')
Attributes
- ancillas#
Returns a list of ancilla bits in the order that the registers were added.
- calibrations#
Return calibration dictionary.
The custom pulse definition of a given gate is of the form
{'gate_name': {(qubits, params): schedule}}
- clbits#
Returns a list of classical bits in the order that the registers were added.
- data#
Return the circuit data (instructions and context).
- Rückgabe:
a list-like object containing the
CircuitInstruction
s for each instruction.- Rückgabetyp:
QuantumCircuitData
- extension_lib = 'include "qelib1.inc";'#
- global_phase#
Return the global phase of the circuit in radians.
- header = 'OPENQASM 2.0;'#
- instances = 153#
- layout#
Return any associated layout information about the circuit
This attribute contains an optional
TranspileLayout
object. This is typically set on the output fromtranspile()
orPassManager.run()
to retain information about the permutations caused on the input circuit by transpilation.There are two types of permutations caused by the
transpile()
function, an initial layout which permutes the qubits based on the selected physical qubits on theTarget
, and a final layout which is an output permutation caused bySwapGate
s inserted during routing.
- metadata#
The user provided metadata associated with the circuit.
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
- num_ancillas#
Return the number of ancilla qubits.
- num_clbits#
Return number of classical bits.
- num_parameters#
The number of parameter objects in the circuit.
- num_qubits#
Return number of qubits.
- op_start_times#
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
- Rückgabe:
List of integers representing instruction start times. The index corresponds to the index of instruction in
QuantumCircuit.data
.- Verursacht:
AttributeError – When circuit is not scheduled.
- parameters#
The parameters defined in the circuit.
This attribute returns the
Parameter
objects in the circuit sorted alphabetically. Note that parameters instantiated with aParameterVector
are still sorted numerically.Examples
The snippet below shows that insertion order of parameters does not matter.
>>> from qiskit.circuit import QuantumCircuit, Parameter >>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant") >>> circuit = QuantumCircuit(1) >>> circuit.rx(b, 0) >>> circuit.rz(elephant, 0) >>> circuit.ry(a, 0) >>> circuit.parameters # sorted alphabetically! ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal „10“ comes before „2“ in strict alphabetical sorting.
>>> from qiskit.circuit import QuantumCircuit, Parameter >>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")] >>> circuit = QuantumCircuit(1) >>> circuit.u(*angles, 0) >>> circuit.draw() ┌─────────────────────────────┐ q: ┤ U(angle_1,angle_2,angle_10) ├ └─────────────────────────────┘ >>> circuit.parameters ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
To respect numerical sorting, a
ParameterVector
can be used.>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector >>> x = ParameterVector("x", 12) >>> circuit = QuantumCircuit(1) >>> for x_i in x: ... circuit.rx(x_i, 0) >>> circuit.parameters ParameterView([ ParameterVectorElement(x[0]), ParameterVectorElement(x[1]), ParameterVectorElement(x[2]), ParameterVectorElement(x[3]), ..., ParameterVectorElement(x[11]) ])
- Rückgabe:
The sorted
Parameter
objects in the circuit.
- prefix = 'circuit'#
- qubits#
Returns a list of quantum bits in the order that the registers were added.
Methods
- add_bits(bits)[Quellcode]#
Add Bits to the circuit.
- add_calibration(gate, qubits, schedule, params=None)[Quellcode]#
Register a low-level, custom pulse definition for the given gate.
- Parameter:
- Verursacht:
Exception – if the gate is of type string and params is None.
- add_register(*regs)[Quellcode]#
Add registers.
- append(instruction, qargs=None, cargs=None)[Quellcode]#
Append one or more instructions to the end of the circuit, modifying the circuit in place.
The
qargs
andcargs
will be expanded and broadcast according to the rules of the givenInstruction
, and any non-Bit
specifiers (such as integer indices) will be resolved into the relevant instances.If a
CircuitInstruction
is given, it will be unwrapped, verified in the context of this circuit, and a new object will be appended to the circuit. In this case, you may not passqargs
orcargs
separately.- Parameter:
instruction (Operation | CircuitInstruction) –
Instruction
instance to append, or aCircuitInstruction
with all its context.qargs (Sequence[QubitSpecifier] | None) – specifiers of the
Qubit
s to attach instruction to.cargs (Sequence[ClbitSpecifier] | None) – specifiers of the
Clbit
s to attach instruction to.
- Rückgabe:
a handle to the
CircuitInstruction
s that were actually added to the circuit.- Rückgabetyp:
- Verursacht:
CircuitError – if the operation passed is not an instance of
Instruction
.
- assign_parameters(parameters: Mapping[Parameter, ParameterExpression | float] | Sequence[ParameterExpression | float], inplace: Literal[False] = False, *, flat_input: bool = False, strict: bool = True) QuantumCircuit [Quellcode]#
- assign_parameters(parameters: Mapping[Parameter, ParameterExpression | float] | Sequence[ParameterExpression | float], inplace: Literal[True] = False, *, flat_input: bool = False, strict: bool = True) None
Assign parameters to new parameters or values.
If
parameters
is passed as a dictionary, the keys must beParameter
instances in the current circuit. The values of the dictionary can either be numeric values or new parameter objects.If
parameters
is passed as a list or array, the elements are assigned to the current parameters in the order ofparameters
which is sorted alphabetically (while respecting the ordering inParameterVector
objects).The values can be assigned to the current circuit object or to a copy of it.
- Parameter:
parameters – Either a dictionary or iterable specifying the new parameter values.
inplace – If False, a copy of the circuit with the bound parameters is returned. If True the circuit instance itself is modified.
flat_input – If
True
andparameters
is a mapping type, it is assumed to be exactly a mapping of{parameter: value}
. By default (False
), the mapping may also containParameterVector
keys that point to a corresponding sequence of values, and these will be unrolled during the mapping.strict – If
False
, any parameters given in the mapping that are not used in the circuit will be ignored. IfTrue
(the default), an error will be raised indicating a logic error.
- Verursacht:
CircuitError – If parameters is a dict and contains parameters not present in the circuit.
ValueError – If parameters is a list/array and the length mismatches the number of free parameters in the circuit.
- Rückgabe:
A copy of the circuit with bound parameters if
inplace
is False, otherwise None.
Examples
Create a parameterized circuit and assign the parameters in-place.
from qiskit.circuit import QuantumCircuit, Parameter circuit = QuantumCircuit(2) params = [Parameter('A'), Parameter('B'), Parameter('C')] circuit.ry(params[0], 0) circuit.crx(params[1], 0, 1) circuit.draw('mpl') circuit.assign_parameters({params[0]: params[2]}, inplace=True) circuit.draw('mpl')
Bind the values out-of-place by list and get a copy of the original circuit.
from qiskit.circuit import QuantumCircuit, ParameterVector circuit = QuantumCircuit(2) params = ParameterVector('P', 2) circuit.ry(params[0], 0) circuit.crx(params[1], 0, 1) bound_circuit = circuit.assign_parameters([1, 2]) bound_circuit.draw('mpl') circuit.draw('mpl')
- barrier(*qargs, label=None)[Quellcode]#
Apply
Barrier
. Ifqargs
is empty, applies to all qubits in the circuit.- Parameter:
qargs (QubitSpecifier) – Specification for one or more qubit arguments.
label (str) – The string label of the barrier.
- Rückgabe:
handle to the added instructions.
- Rückgabetyp:
- bind_parameters(values)[Quellcode]#
Assign numeric parameters to values yielding a new circuit.
If the values are given as list or array they are bound to the circuit in the order of
parameters
(see the docstring for more details).To assign new Parameter objects or bind the values in-place, without yielding a new circuit, use the
assign_parameters()
method.- Parameter:
values (Mapping[Parameter, float] | Sequence[float]) –
{parameter: value, ...}
or[value1, value2, ...]
- Verursacht:
CircuitError – If values is a dict and contains parameters not present in the circuit.
TypeError – If values contains a ParameterExpression.
- Rückgabe:
Copy of self with assignment substitution.
- Rückgabetyp:
- break_loop()[Quellcode]#
Apply
BreakLoopOp
.Warnung
If you are using the context-manager „builder“ forms of
if_test()
,for_loop()
orwhile_loop()
, you can only call this method if you are within a loop context, because otherwise the „resource width“ of the operation cannot be determined. This would quickly lead to invalid circuits, and so if you are trying to construct a reusable loop body (without the context managers), you must also use the non-context-manager form ofif_test()
andif_else()
. Take care that theBreakLoopOp
instruction must span all the resources of its containing loop, not just the immediate scope.- Rückgabe:
A handle to the instruction created.
- Verursacht:
CircuitError – if this method was called within a builder context, but not contained within a loop.
- Rückgabetyp:
- static cast(value, type_)[Quellcode]#
Best effort to cast value to type. Otherwise, returns the value.
- Rückgabetyp:
S | T
- cbit_argument_conversion(clbit_representation)[Quellcode]#
Converts several classical bit representations (such as indexes, range, etc.) into a list of classical bits.
- Parameter:
clbit_representation (Object) – representation to expand
- Rückgabe:
Where each tuple is a classical bit.
- Rückgabetyp:
List(tuple)
- ccx(control_qubit1, control_qubit2, target_qubit, ctrl_state=None)[Quellcode]#
Apply
CCXGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit1 (QubitSpecifier) – The qubit(s) used as the first control.
control_qubit2 (QubitSpecifier) – The qubit(s) used as the second control.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- ccz(control_qubit1, control_qubit2, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CCZGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit1 (QubitSpecifier) – The qubit(s) used as the first control.
control_qubit2 (QubitSpecifier) – The qubit(s) used as the second control.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚10‘). Defaults to controlling on the ‚11‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- ch(control_qubit, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CHGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit (QubitSpecifier) – The qubit(s) used as the control.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- clear()[Quellcode]#
Clear all instructions in self.
Clearing the circuits will keep the metadata and calibrations.
- classmethod cls_instances()[Quellcode]#
Return the current number of instances of this class, useful for auto naming.
- Rückgabetyp:
- classmethod cls_prefix()[Quellcode]#
Return the prefix to use for auto naming.
- Rückgabetyp:
- cnot(control_qubit, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CXGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit (QubitSpecifier) – The qubit(s) used as the control.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
Siehe auch
QuantumCircuit.cx: the same function with a different name.
- compose(other, qubits=None, clbits=None, front=False, inplace=False, wrap=False)[Quellcode]#
Compose circuit with
other
circuit or instruction, optionally permuting wires.other
can be narrower or of equal width toself
.- Parameter:
other (qiskit.circuit.Instruction or QuantumCircuit) – (sub)circuit or instruction to compose onto self. If not a
QuantumCircuit
, this can be anything thatappend
will accept.front (bool) – If True, front composition will be performed. This is not possible within control-flow builder context managers.
inplace (bool) – If True, modify the object. Otherwise return composed circuit.
wrap (bool) – If True, wraps the other circuit into a gate (or instruction, depending on whether it contains only unitary instructions) before composing it onto self.
- Rückgabe:
the composed circuit (returns None if inplace==True).
- Rückgabetyp:
- Verursacht:
CircuitError – if no correct wire mapping can be made between the two circuits, such as if
other
is wider thanself
.CircuitError – if trying to emit a new circuit while
self
has a partially built control-flow context active, such as the context-manager forms ofif_test()
,for_loop()
andwhile_loop()
.CircuitError – if trying to compose to the front of a circuit when a control-flow builder block is active; there is no clear meaning to this action.
Examples
>>> lhs.compose(rhs, qubits=[3, 2], inplace=True)
┌───┐ ┌─────┐ ┌───┐ lqr_1_0: ───┤ H ├─── rqr_0: ──■──┤ Tdg ├ lqr_1_0: ───┤ H ├─────────────── ├───┤ ┌─┴─┐└─────┘ ├───┤ lqr_1_1: ───┤ X ├─── rqr_1: ┤ X ├─────── lqr_1_1: ───┤ X ├─────────────── ┌──┴───┴──┐ └───┘ ┌──┴───┴──┐┌───┐ lqr_1_2: ┤ U1(0.1) ├ + = lqr_1_2: ┤ U1(0.1) ├┤ X ├─────── └─────────┘ └─────────┘└─┬─┘┌─────┐ lqr_2_0: ─────■───── lqr_2_0: ─────■───────■──┤ Tdg ├ ┌─┴─┐ ┌─┴─┐ └─────┘ lqr_2_1: ───┤ X ├─── lqr_2_1: ───┤ X ├─────────────── └───┘ └───┘ lcr_0: 0 ═══════════ lcr_0: 0 ═══════════════════════ lcr_1: 0 ═══════════ lcr_1: 0 ═══════════════════════
- continue_loop()[Quellcode]#
Apply
ContinueLoopOp
.Warnung
If you are using the context-manager „builder“ forms of
if_test()
,for_loop()
orwhile_loop()
, you can only call this method if you are within a loop context, because otherwise the „resource width“ of the operation cannot be determined. This would quickly lead to invalid circuits, and so if you are trying to construct a reusable loop body (without the context managers), you must also use the non-context-manager form ofif_test()
andif_else()
. Take care that theContinueLoopOp
instruction must span all the resources of its containing loop, not just the immediate scope.- Rückgabe:
A handle to the instruction created.
- Verursacht:
CircuitError – if this method was called within a builder context, but not contained within a loop.
- Rückgabetyp:
- control(num_ctrl_qubits=1, label=None, ctrl_state=None)[Quellcode]#
Control this circuit on
num_ctrl_qubits
qubits.- Parameter:
- Rückgabe:
The controlled version of this circuit.
- Rückgabetyp:
- Verursacht:
CircuitError – If the circuit contains a non-unitary operation and cannot be controlled.
- copy(name=None)[Quellcode]#
Copy the circuit.
- Parameter:
name (str) – name to be given to the copied circuit. If None, then the name stays the same
- Rückgabe:
a deepcopy of the current circuit, with the specified name
- Rückgabetyp:
- copy_empty_like(name=None)[Quellcode]#
Return a copy of self with the same structure but empty.
- That structure includes:
name, calibrations and other metadata
global phase
all the qubits and clbits, including the registers
- Parameter:
name (str) – Name for the copied circuit. If None, then the name stays the same.
- Rückgabe:
An empty copy of self.
- Rückgabetyp:
- count_ops()[Quellcode]#
Count each operation kind in the circuit.
- Rückgabe:
a breakdown of how many operations of each kind, sorted by amount.
- Rückgabetyp:
OrderedDict
- cp(theta, control_qubit, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CPhaseGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
theta (ParameterValueType) – The angle of the rotation.
control_qubit (QubitSpecifier) – The qubit(s) used as the control.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- crx(theta, control_qubit, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CRXGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
theta (ParameterValueType) – The angle of the rotation.
control_qubit (QubitSpecifier) – The qubit(s) used as the control.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- cry(theta, control_qubit, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CRYGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
theta (ParameterValueType) – The angle of the rotation.
control_qubit (QubitSpecifier) – The qubit(s) used as the control.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- crz(theta, control_qubit, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CRZGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
theta (ParameterValueType) – The angle of the rotation.
control_qubit (QubitSpecifier) – The qubit(s) used as the control.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- cs(control_qubit, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CSGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit (QubitSpecifier) – The qubit(s) used as the control.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- csdg(control_qubit, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CSdgGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit (QubitSpecifier) – The qubit(s) used as the control.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- cswap(control_qubit, target_qubit1, target_qubit2, label=None, ctrl_state=None)[Quellcode]#
Apply
CSwapGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit (QubitSpecifier) – The qubit(s) used as the control.
target_qubit1 (QubitSpecifier) – The qubit(s) targeted by the gate.
target_qubit2 (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g.
'1'
). Defaults to controlling on the'1'
state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- csx(control_qubit, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CSXGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit (QubitSpecifier) – The qubit(s) used as the control.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- cu(theta, phi, lam, gamma, control_qubit, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CUGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
theta (ParameterValueType) – The \(\theta\) rotation angle of the gate.
phi (ParameterValueType) – The \(\phi\) rotation angle of the gate.
lam (ParameterValueType) – The \(\lambda\) rotation angle of the gate.
gamma (ParameterValueType) – The global phase applied of the U gate, if applied.
control_qubit (QubitSpecifier) – The qubit(s) used as the control.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- cx(control_qubit, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CXGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit (QubitSpecifier) – The qubit(s) used as the control.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- cy(control_qubit, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CYGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit (QubitSpecifier) – The qubit(s) used as the controls.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- cz(control_qubit, target_qubit, label=None, ctrl_state=None)[Quellcode]#
Apply
CZGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit (QubitSpecifier) – The qubit(s) used as the controls.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
label (str | None) – The string label of the gate in the circuit.
ctrl_state (str | int | None) – The control state in decimal, or as a bitstring (e.g. ‚1‘). Defaults to controlling on the ‚1‘ state.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- dcx(qubit1, qubit2)[Quellcode]#
Apply
DCXGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- decompose(gates_to_decompose=None, reps=1)[Quellcode]#
Call a decomposition pass on this circuit, to decompose one level (shallow decompose).
- Parameter:
gates_to_decompose (type or str or list(type, str)) – Optional subset of gates to decompose. Can be a gate type, such as
HGate
, or a gate name, such as ‚h‘, or a gate label, such as ‚My H Gate‘, or a list of any combination of these. If a gate name is entered, it will decompose all gates with that name, whether the gates have labels or not. Defaults to all gates in circuit.reps (int) – Optional number of times the circuit should be decomposed. For instance,
reps=2
equals callingcircuit.decompose().decompose()
. can decompose specific gates specific time
- Rückgabe:
a circuit one level decomposed
- Rückgabetyp:
- delay(duration, qarg=None, unit='dt')[Quellcode]#
Apply
Delay
. If qarg isNone
, applies to all qubits. When applying to multiple qubits, delays with the same duration will be created.- Parameter:
duration (int or float or ParameterExpression) – duration of the delay.
qarg (Object) – qubit argument to apply this delay.
unit (str) – unit of the duration. Supported units:
's'
,'ms'
,'us'
,'ns'
,'ps'
, and'dt'
. Default is'dt'
, i.e. integer time unit depending on the target backend.
- Rückgabe:
handle to the added instructions.
- Rückgabetyp:
- Verursacht:
CircuitError – if arguments have bad format.
- depth(filter_function=<function QuantumCircuit.<lambda>>)[Quellcode]#
Return circuit depth (i.e., length of critical path).
- Parameter:
filter_function (callable) – A function to filter instructions. Should take as input a tuple of (Instruction, list(Qubit), list(Clbit)). Instructions for which the function returns False are ignored in the computation of the circuit depth. By default filters out „directives“, such as barrier or snapshot.
- Rückgabe:
Depth of circuit.
- Rückgabetyp:
Notes
The circuit depth and the DAG depth need not be the same.
- diagonal(diag, qubit)#
Attach a diagonal gate to a circuit.
The decomposition is based on Theorem 7 given in „Synthesis of Quantum Logic Circuits“ by Shende et al. (https://arxiv.org/pdf/quant-ph/0406176.pdf).
- Parameter:
diag (list) – list of the 2^k diagonal entries (for a diagonal gate on k qubits). Must contain at least two entries
qubit (QuantumRegister|list) – list of k qubits the diagonal is acting on (the order of the qubits specifies the computational basis in which the diagonal gate is provided: the first element in diag acts on the state where all the qubits in q are in the state 0, the second entry acts on the state where all the qubits q[1],…,q[k-1] are in the state zero and q[0] is in the state 1, and so on)
- Rückgabe:
the diagonal gate which was attached to the circuit.
- Rückgabetyp:
- Verursacht:
QiskitError – if the list of the diagonal entries or the qubit list is in bad format; if the number of diagonal entries is not 2^k, where k denotes the number of qubits
- draw(output=None, scale=None, filename=None, style=None, interactive=False, plot_barriers=True, reverse_bits=None, justify=None, vertical_compression='medium', idle_wires=True, with_layout=True, fold=None, ax=None, initial_state=False, cregbundle=None, wire_order=None)[Quellcode]#
Draw the quantum circuit. Use the output parameter to choose the drawing format:
text: ASCII art TextDrawing that can be printed in the console.
mpl: images with color rendered purely in Python using matplotlib.
latex: high-quality images compiled via latex.
latex_source: raw uncompiled latex output.
Warnung
Support for
Expr
nodes in conditions andSwitchCaseOp.target
fields is preliminary and incomplete. Thetext
andmpl
drawers will make a best-effort attempt to show data dependencies, but the LaTeX-based drawers will skip these completely.- Parameter:
output (str) – select the output method to use for drawing the circuit. Valid choices are
text
,mpl
,latex
,latex_source
. By default the text drawer is used unless the user config file (usually~/.qiskit/settings.conf
) has an alternative backend set as the default. For example,circuit_drawer = latex
. If the output kwarg is set, that backend will always be used over the default in the user config file.scale (float) – scale of image to draw (shrink if < 1.0). Only used by the mpl, latex and latex_source outputs. Defaults to 1.0.
filename (str) – file path to save image to. Defaults to None.
style (dict or str) – dictionary of style or file name of style json file. This option is only used by the mpl or latex output type. If style is a str, it is used as the path to a json file which contains a style dict. The file will be opened, parsed, and then any style elements in the dict will replace the default values in the input dict. A file to be loaded must end in
.json
, but the name entered here can omit.json
. For example,style='iqx.json'
orstyle='iqx'
. If style is a dict and the'name'
key is set, that name will be used to load a json file, followed by loading the other items in the style dict. For example,style={'name': 'iqx'}
. If style is not a str and name is not a key in the style dict, then the default value from the user config file (usually~/.qiskit/settings.conf
) will be used, for example,circuit_mpl_style = iqx
. If none of these are set, the default style will be used. The search path for style json files can be specified in the user config, for example,circuit_mpl_style_path = /home/user/styles:/home/user
. See:DefaultStyle
for more information on the contents.interactive (bool) – when set to true, show the circuit in a new window (for mpl this depends on the matplotlib backend being used supporting this). Note when used with either the text or the latex_source output type this has no effect and will be silently ignored. Defaults to False.
reverse_bits (bool) – when set to True, reverse the bit order inside registers for the output visualization. Defaults to False unless the user config file (usually
~/.qiskit/settings.conf
) has an alternative value set. For example,circuit_reverse_bits = True
.plot_barriers (bool) – enable/disable drawing barriers in the output circuit. Defaults to True.
justify (string) – options are
left
,right
ornone
. If anything else is supplied, it defaults to left justified. It refers to where gates should be placed in the output circuit if there is an option.none
results in each gate being placed in its own column.vertical_compression (string) –
high
,medium
orlow
. It merges the lines generated by the text output so the drawing will take less vertical room. Default ismedium
. Only used by the text output, will be silently ignored otherwise.idle_wires (bool) – include idle wires (wires with no circuit elements) in output visualization. Default is True.
with_layout (bool) – include layout information, with labels on the physical layout. Default is True.
fold (int) – sets pagination. It can be disabled using -1. In text, sets the length of the lines. This is useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using
shutil.get_terminal_size()
. However, if running in jupyter, the default line length is set to 80 characters. In mpl, it is the number of (visual) layers before folding. Default is 25.ax (matplotlib.axes.Axes) – Only used by the mpl backend. An optional Axes object to be used for the visualization output. If none is specified, a new matplotlib Figure will be created and used. Additionally, if specified there will be no returned Figure since it is redundant.
initial_state (bool) – Optional. Adds
|0>
in the beginning of the wire. Default is False.cregbundle (bool) – Optional. If set True, bundle classical registers. Default is True, except for when
output
is set to"text"
.wire_order (list) – Optional. A list of integers used to reorder the display of the bits. The list must have an entry for every bit with the bits in the range 0 to (
num_qubits
+num_clbits
).
- Rückgabe:
TextDrawing
ormatplotlib.figure
orPIL.Image
orstr
:- TextDrawing (output=‘text‘)
A drawing that can be printed as ascii art.
- matplotlib.figure.Figure (output=‘mpl‘)
A matplotlib figure object for the circuit diagram.
- PIL.Image (output=‘latex‘)
An in-memory representation of the image of the circuit diagram.
- str (output=‘latex_source‘)
The LaTeX source code for visualizing the circuit diagram.
- Verursacht:
VisualizationError – when an invalid output method is selected
ImportError – when the output methods requires non-installed libraries.
Example
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
- ecr(qubit1, qubit2)[Quellcode]#
Apply
ECRGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- find_bit(bit)[Quellcode]#
Find locations in the circuit which can be used to reference a given
Bit
.- Parameter:
bit (Bit) – The bit to locate.
- Rückgabe:
- A 2-tuple. The first element (
index
) contains the index at which the
Bit
can be found (in eitherqubits
,clbits
, depending on its type). The second element (registers
) is a list of(register, index)
pairs with an entry for eachRegister
in the circuit which contains theBit
(and the index in theRegister
at which it can be found).
- A 2-tuple. The first element (
- Rückgabetyp:
Notes
The circuit index of an
AncillaQubit
will be its index inqubits
, notancillas
.- Verursacht:
CircuitError – If the supplied
Bit
was of an unknown type.CircuitError – If the supplied
Bit
could not be found on the circuit.
- Rückgabetyp:
BitLocations
- for_loop(indexset: Iterable[int], loop_parameter: Parameter | None, body: None, qubits: None, clbits: None, *, label: str | None) qiskit.circuit.controlflow.for_loop.ForLoopContext [Quellcode]#
- for_loop(indexset: Iterable[int], loop_parameter: Parameter | None, body: QuantumCircuit, qubits: Sequence[Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]], clbits: Sequence[Clbit | ClassicalRegister | int | slice | Sequence[Clbit | int]], *, label: str | None) InstructionSet
Create a
for
loop on this circuit.There are two forms for calling this function. If called with all its arguments (with the possible exception of
label
), it will create aForLoopOp
with the givenbody
. Ifbody
(andqubits
andclbits
) are not passed, then this acts as a context manager, which, when entered, provides a loop variable (unless one is given, in which case it will be reused) and will automatically build aForLoopOp
when the scope finishes. In this form, you do not need to keep track of the qubits or clbits you are using, because the scope will handle it for you.For example:
from qiskit import QuantumCircuit qc = QuantumCircuit(2, 1) with qc.for_loop(range(5)) as i: qc.h(0) qc.cx(0, 1) qc.measure(0, 0) qc.break_loop().c_if(0, True)
- Parameter:
indexset (Iterable[int]) – A collection of integers to loop over. Always necessary.
loop_parameter (Optional[Parameter]) –
The parameter used within
body
to which the values fromindexset
will be assigned. In the context-manager form, if this argument is not supplied, then a loop parameter will be allocated for you and returned as the value of thewith
statement. This will only be bound into the circuit if it is used within the body.If this argument is
None
in the manual form of this method,body
will be repeated once for each of the items inindexset
but their values will be ignored.body (Optional[QuantumCircuit]) – The loop body to be repeatedly executed. Omit this to use the context-manager mode.
qubits (Optional[Sequence[QubitSpecifier]]) – The circuit qubits over which the loop body should be run. Omit this to use the context-manager mode.
clbits (Optional[Sequence[ClbitSpecifier]]) – The circuit clbits over which the loop body should be run. Omit this to use the context-manager mode.
label (Optional[str]) – The string label of the instruction in the circuit.
- Rückgabe:
depending on the call signature, either a context manager for creating the for loop (it will automatically be added to the circuit at the end of the block), or an
InstructionSet
handle to the appended loop operation.- Rückgabetyp:
InstructionSet or ForLoopContext
- Verursacht:
CircuitError – if an incorrect calling convention is used.
- fredkin(control_qubit, target_qubit1, target_qubit2)[Quellcode]#
Apply
CSwapGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) used as the control.
target_qubit1 (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) targeted by the gate.
target_qubit2 (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) targeted by the gate.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
Siehe auch
QuantumCircuit.cswap: the same function with a different name.
- static from_instructions(instructions, *, qubits=(), clbits=(), name=None, global_phase=0, metadata=None)[Quellcode]#
Construct a circuit from an iterable of CircuitInstructions.
- Parameter:
instructions (Iterable[CircuitInstruction | tuple[qiskit.circuit.Instruction] | tuple[qiskit.circuit.Instruction, Iterable[Qubit]] | tuple[qiskit.circuit.Instruction, Iterable[Qubit], Iterable[Clbit]]]) – The instructions to add to the circuit.
qubits (Iterable[Qubit]) – Any qubits to add to the circuit. This argument can be used, for example, to enforce a particular ordering of qubits.
clbits (Iterable[Clbit]) – Any classical bits to add to the circuit. This argument can be used, for example, to enforce a particular ordering of classical bits.
name (str | None) – The name of the circuit.
global_phase (ParameterValueType) – The global phase of the circuit in radians.
metadata (dict | None) – Arbitrary key value metadata to associate with the circuit.
- Rückgabe:
The quantum circuit.
- Rückgabetyp:
- static from_qasm_file(path)[Quellcode]#
Read an OpenQASM 2.0 program from a file and convert to an instance of
QuantumCircuit
.- Parameter:
path (str) – Path to the file for an OpenQASM 2 program
- Rückgabe:
The QuantumCircuit object for the input OpenQASM 2.
- Rückgabetyp:
Siehe auch
qasm2.load()
: the complete interface to the OpenQASM 2 importer.
- static from_qasm_str(qasm_str)[Quellcode]#
Convert a string containing an OpenQASM 2.0 program to a
QuantumCircuit
.- Parameter:
qasm_str (str) – A string containing an OpenQASM 2.0 program.
- Rückgabe:
The QuantumCircuit object for the input OpenQASM 2
- Rückgabetyp:
Siehe auch
qasm2.loads()
: the complete interface to the OpenQASM 2 importer.
- get_instructions(name)[Quellcode]#
Get instructions matching name.
- h(qubit)[Quellcode]#
Apply
HGate
.For the full matrix form of this gate, see the underlying gate documentation.
- hamiltonian(operator, time, qubits, label=None)#
Apply hamiltonian evolution to qubits.
This gate resolves to a
UnitaryGate
as \(U(t) = exp(-i t H)\), which can be decomposed into basis gates if it is 2 qubits or less, or simulated directly in Aer for more qubits.- Parameter:
- Rückgabe:
The quantum circuit.
- Rückgabetyp:
- Verursacht:
ExtensionError – if input data is not an N-qubit unitary operator.
- has_calibration_for(instruction)[Quellcode]#
Return True if the circuit has a calibration defined for the instruction context. In this case, the operation does not need to be translated to the device basis.
- has_register(register)[Quellcode]#
Test if this circuit has the register r.
- i(qubit)[Quellcode]#
Apply
IGate
.For the full matrix form of this gate, see the underlying gate documentation.
- id(qubit)[Quellcode]#
Apply
IGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
Siehe auch
QuantumCircuit.i: the same function.
- if_else(condition, true_body, false_body, qubits, clbits, label=None)[Quellcode]#
Apply
IfElseOp
.Bemerkung
This method does not have an associated context-manager form, because it is already handled by the
if_test()
method. You can use theelse
part of that with something such as:from qiskit.circuit import QuantumCircuit, Qubit, Clbit bits = [Qubit(), Qubit(), Clbit()] qc = QuantumCircuit(bits) qc.h(0) qc.cx(0, 1) qc.measure(0, 0) with qc.if_test((bits[2], 0)) as else_: qc.h(0) with else_: qc.x(0)
- Parameter:
condition (tuple[ClassicalRegister, int] | tuple[Clbit, int] | tuple[Clbit, bool]) – A condition to be evaluated at circuit runtime which, if true, will trigger the evaluation of
true_body
. Can be specified as either a tuple of aClassicalRegister
to be tested for equality with a givenint
, or as a tuple of aClbit
to be compared to either abool
or anint
.true_body (QuantumCircuit) – The circuit body to be run if
condition
is true.false_body (QuantumCircuit) – The circuit to be run if
condition
is false.qubits (Sequence[QubitSpecifier]) – The circuit qubits over which the if/else should be run.
clbits (Sequence[ClbitSpecifier]) – The circuit clbits over which the if/else should be run.
label (str | None) – The string label of the instruction in the circuit.
- Verursacht:
CircuitError – If the provided condition references Clbits outside the enclosing circuit.
- Rückgabe:
A handle to the instruction created.
- Rückgabetyp:
- if_test(condition: tuple[ClassicalRegister | Clbit, int], true_body: None, qubits: None, clbits: None, *, label: str | None) qiskit.circuit.controlflow.if_else.IfContext [Quellcode]#
- if_test(condition: tuple[ClassicalRegister | Clbit, int], true_body: QuantumCircuit, qubits: Sequence[Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]], clbits: Sequence[Clbit | ClassicalRegister | int | slice | Sequence[Clbit | int]], *, label: str | None = None) InstructionSet
Create an
if
statement on this circuit.There are two forms for calling this function. If called with all its arguments (with the possible exception of
label
), it will create aIfElseOp
with the giventrue_body
, and there will be no branch for thefalse
condition (see also theif_else()
method). However, iftrue_body
(andqubits
andclbits
) are not passed, then this acts as a context manager, which can be used to buildif
statements. The return value of thewith
statement is a chainable context manager, which can be used to create subsequentelse
blocks. In this form, you do not need to keep track of the qubits or clbits you are using, because the scope will handle it for you.For example:
from qiskit.circuit import QuantumCircuit, Qubit, Clbit bits = [Qubit(), Qubit(), Qubit(), Clbit(), Clbit()] qc = QuantumCircuit(bits) qc.h(0) qc.cx(0, 1) qc.measure(0, 0) qc.h(0) qc.cx(0, 1) qc.measure(0, 1) with qc.if_test((bits[3], 0)) as else_: qc.x(2) with else_: qc.h(2) qc.z(2)
- Parameter:
condition (Tuple[Union[ClassicalRegister, Clbit], int]) – A condition to be evaluated at circuit runtime which, if true, will trigger the evaluation of
true_body
. Can be specified as either a tuple of aClassicalRegister
to be tested for equality with a givenint
, or as a tuple of aClbit
to be compared to either abool
or anint
.true_body (Optional[QuantumCircuit]) – The circuit body to be run if
condition
is true.qubits (Optional[Sequence[QubitSpecifier]]) – The circuit qubits over which the if/else should be run.
clbits (Optional[Sequence[ClbitSpecifier]]) – The circuit clbits over which the if/else should be run.
label (Optional[str]) – The string label of the instruction in the circuit.
- Rückgabe:
depending on the call signature, either a context manager for creating the
if
block (it will automatically be added to the circuit at the end of the block), or anInstructionSet
handle to the appended conditional operation.- Rückgabetyp:
InstructionSet or IfContext
- Verursacht:
CircuitError – If the provided condition references Clbits outside the enclosing circuit.
CircuitError – if an incorrect calling convention is used.
- Rückgabe:
A handle to the instruction created.
- initialize(params, qubits=None, normalize=False)#
Initialize qubits in a specific state.
Qubit initialization is done by first resetting the qubits to \(|0\rangle\) followed by calling
qiskit.extensions.StatePreparation
class to prepare the qubits in a specified state. Both these steps are included in theqiskit.extensions.Initialize
instruction.- Parameter:
str: labels of basis states of the Pauli eigenstates Z, X, Y. See
Statevector.from_label()
. Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label ‚01‘ initializes the qubit zero to \(|1\rangle\) and the qubit one to \(|0\rangle\).list: vector of complex amplitudes to initialize to.
int: an integer that is used as a bitmap indicating which qubits to initialize to \(|1\rangle\). Example: setting params to 5 would initialize qubit 0 and qubit 2 to \(|1\rangle\) and qubit 1 to \(|0\rangle\).
qubits (QuantumRegister or Qubit or int) –
QuantumRegister: A list of qubits to be initialized [Default: None].
Qubit: Single qubit to be initialized [Default: None].
int: Index of qubit to be initialized [Default: None].
list: Indexes of qubits to be initialized [Default: None].
normalize (bool) – whether to normalize an input array to a unit vector.
- Rückgabe:
a handle to the instruction that was just initialized
- Rückgabetyp:
Examples
Prepare a qubit in the state \((|0\rangle - |1\rangle) / \sqrt{2}\).
import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(1) circuit.initialize([1/np.sqrt(2), -1/np.sqrt(2)], 0) circuit.draw()
output:
┌──────────────────────────────┐ q_0: ┤ Initialize(0.70711,-0.70711) ├ └──────────────────────────────┘
Initialize from a string two qubits in the state \(|10\rangle\). The order of the labels is reversed with respect to qubit index. More information about labels for basis states are in
Statevector.from_label()
.import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.initialize('01', circuit.qubits) circuit.draw()
output:
┌──────────────────┐ q_0: ┤0 ├ │ Initialize(0,1) │ q_1: ┤1 ├ └──────────────────┘
Initialize two qubits from an array of complex amplitudes.
import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.initialize([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits) circuit.draw()
output:
┌────────────────────────────────────┐ q_0: ┤0 ├ │ Initialize(0,0.70711,-0.70711j,0) │ q_1: ┤1 ├ └────────────────────────────────────┘
- inverse()[Quellcode]#
Invert (take adjoint of) this circuit.
This is done by recursively inverting all gates.
- Rückgabe:
the inverted circuit
- Rückgabetyp:
- Verursacht:
CircuitError – if the circuit cannot be inverted.
Examples
input:
┌───┐ q_0: ┤ H ├─────■────── └───┘┌────┴─────┐ q_1: ─────┤ RX(1.57) ├ └──────────┘
output:
┌───┐ q_0: ──────■──────┤ H ├ ┌─────┴─────┐└───┘ q_1: ┤ RX(-1.57) ├───── └───────────┘
- iso(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None, epsilon=1e-10)#
Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
- Parameter:
isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
epsilon (float) – error tolerance of calculations. Default is epsilon = _EPS.
- Rückgabe:
the isometry is attached to the quantum circuit.
- Rückgabetyp:
- Verursacht:
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
- isometry(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None, epsilon=1e-10)#
Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.
- Parameter:
isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).
q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).
q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.
q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.
q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.
epsilon (float) – error tolerance of calculations. Default is epsilon = _EPS.
- Rückgabe:
the isometry is attached to the quantum circuit.
- Rückgabetyp:
- Verursacht:
QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.
- iswap(qubit1, qubit2)[Quellcode]#
Apply
iSwapGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- mcp(lam, control_qubits, target_qubit)[Quellcode]#
Apply
MCPhaseGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
lam (ParameterExpression | float) – The angle of the rotation.
control_qubits (Sequence[Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]]) – The qubits used as the controls.
target_qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) targeted by the gate.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- mcrx(theta, q_controls, q_target, use_basis_gates=False)#
Apply Multiple-Controlled X rotation gate
- Parameter:
self (QuantumCircuit) – The QuantumCircuit object to apply the mcrx gate on.
theta (float) – angle theta
q_controls (QuantumRegister or list(Qubit)) – The list of control qubits
q_target (Qubit) – The target qubit
use_basis_gates (bool) – use p, u, cx
- Verursacht:
QiskitError – parameter errors
- mcry(theta, q_controls, q_target, q_ancillae=None, mode=None, use_basis_gates=False)#
Apply Multiple-Controlled Y rotation gate
- Parameter:
self (QuantumCircuit) – The QuantumCircuit object to apply the mcry gate on.
theta (float) – angle theta
q_target (Qubit) – The target qubit
q_ancillae (QuantumRegister or tuple(QuantumRegister, int)) – The list of ancillary qubits.
mode (string) – The implementation mode to use
use_basis_gates (bool) – use p, u, cx
- Verursacht:
QiskitError – parameter errors
- mcrz(lam, q_controls, q_target, use_basis_gates=False)#
Apply Multiple-Controlled Z rotation gate
- Parameter:
- Verursacht:
QiskitError – parameter errors
- mct(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')[Quellcode]#
Apply
MCXGate
.The multi-cX gate can be implemented using different techniques, which use different numbers of ancilla qubits and have varying circuit depth. These modes are:
'noancilla'
: Requires 0 ancilla qubits.'recursion'
: Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0.'v-chain'
: Requires 2 less ancillas than the number of control qubits.'v-chain-dirty'
: Same as for the clean ancillas (but the circuit will be longer).
For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubits (Sequence[QubitSpecifier]) – The qubits used as the controls.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
ancilla_qubits (QubitSpecifier | Sequence[QubitSpecifier] | None) – The qubits used as the ancillae, if the mode requires them.
mode (str) – The choice of mode, explained further above.
- Rückgabe:
A handle to the instructions created.
- Verursacht:
ValueError – if the given mode is not known, or if too few ancilla qubits are passed.
AttributeError – if no ancilla qubits are passed, but some are needed.
- Rückgabetyp:
Siehe auch
QuantumCircuit.mcx: the same gate with a different name.
- mcx(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')[Quellcode]#
Apply
MCXGate
.The multi-cX gate can be implemented using different techniques, which use different numbers of ancilla qubits and have varying circuit depth. These modes are:
'noancilla'
: Requires 0 ancilla qubits.'recursion'
: Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0.'v-chain'
: Requires 2 less ancillas than the number of control qubits.'v-chain-dirty'
: Same as for the clean ancillas (but the circuit will be longer).
For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubits (Sequence[QubitSpecifier]) – The qubits used as the controls.
target_qubit (QubitSpecifier) – The qubit(s) targeted by the gate.
ancilla_qubits (QubitSpecifier | Sequence[QubitSpecifier] | None) – The qubits used as the ancillae, if the mode requires them.
mode (str) – The choice of mode, explained further above.
- Rückgabe:
A handle to the instructions created.
- Verursacht:
ValueError – if the given mode is not known, or if too few ancilla qubits are passed.
AttributeError – if no ancilla qubits are passed, but some are needed.
- Rückgabetyp:
- measure(qubit, cbit)[Quellcode]#
Measure a quantum bit (
qubit
) in the Z basis into a classical bit (cbit
).When a quantum state is measured, a qubit is projected in the computational (Pauli Z) basis to either \(\lvert 0 \rangle\) or \(\lvert 1 \rangle\). The classical bit
cbit
indicates the result of that projection as a0
or a1
respectively. This operation is non-reversible.- Parameter:
- Rückgabe:
handle to the added instructions.
- Rückgabetyp:
- Verursacht:
CircuitError – if arguments have bad format.
Examples
In this example, a qubit is measured and the result of that measurement is stored in the classical bit (usually expressed in diagrams as a double line):
from qiskit import QuantumCircuit circuit = QuantumCircuit(1, 1) circuit.h(0) circuit.measure(0, 0) circuit.draw()
┌───┐┌─┐ q: ┤ H ├┤M├ └───┘└╥┘ c: 1/══════╩═ 0
It is possible to call
measure
with lists ofqubits
andcbits
as a shortcut for one-to-one measurement. These two forms produce identical results:circuit = QuantumCircuit(2, 2) circuit.measure([0,1], [0,1])
circuit = QuantumCircuit(2, 2) circuit.measure(0, 0) circuit.measure(1, 1)
Instead of lists, you can use
QuantumRegister
andClassicalRegister
under the same logic.from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister qreg = QuantumRegister(2, "qreg") creg = ClassicalRegister(2, "creg") circuit = QuantumCircuit(qreg, creg) circuit.measure(qreg, creg)
This is equivalent to:
circuit = QuantumCircuit(qreg, creg) circuit.measure(qreg[0], creg[0]) circuit.measure(qreg[1], creg[1])
- measure_active(inplace=True)[Quellcode]#
Adds measurement to all non-idle qubits. Creates a new ClassicalRegister with a size equal to the number of non-idle qubits being measured.
Returns a new circuit with measurements if inplace=False.
- Parameter:
inplace (bool) – All measurements inplace or return new circuit.
- Rückgabe:
Returns circuit with measurements when inplace = False.
- Rückgabetyp:
- measure_all(inplace=True, add_bits=True)[Quellcode]#
Adds measurement to all qubits.
By default, adds new classical bits in a
ClassicalRegister
to store these measurements. Ifadd_bits=False
, the results of the measurements will instead be stored in the already existing classical bits, with qubitn
being measured into classical bitn
.Returns a new circuit with measurements if
inplace=False
.- Parameter:
- Rückgabe:
Returns circuit with measurements when
inplace=False
.- Rückgabetyp:
- Verursacht:
CircuitError – if
add_bits=False
but there are not enough classical bits.
- ms(theta, qubits)[Quellcode]#
Apply
MSGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
theta (ParameterExpression | float) – The angle of the rotation.
qubits (Sequence[Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]]) – The qubits to apply the gate to.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- num_connected_components(unitary_only=False)[Quellcode]#
How many non-entangled subcircuits can the circuit be factored to.
- num_nonlocal_gates()[Quellcode]#
Return number of non-local gates (i.e. involving 2+ qubits).
Conditional nonlocal gates are also included.
- Rückgabetyp:
- num_tensor_factors()[Quellcode]#
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
Notes
This is here for backwards compatibility, and will be removed in a future release of Qiskit. You should call num_unitary_factors instead.
- Rückgabetyp:
- num_unitary_factors()[Quellcode]#
Computes the number of tensor factors in the unitary (quantum) part of the circuit only.
- Rückgabetyp:
- p(theta, qubit)[Quellcode]#
Apply
PhaseGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
theta (ParameterExpression | float) – THe angle of the rotation.
qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- pauli(pauli_string, qubits)[Quellcode]#
Apply
PauliGate
.- Parameter:
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- power(power, matrix_power=False)[Quellcode]#
Raise this circuit to the power of
power
.If
power
is a positive integer andmatrix_power
isFalse
, this implementation defaults to callingrepeat
. Otherwise, if the circuit is unitary, the matrix is computed to calculate the matrix power.- Parameter:
- Verursacht:
CircuitError – If the circuit needs to be converted to a gate but it is not unitary.
- Rückgabe:
A circuit implementing this circuit raised to the power of
power
.- Rückgabetyp:
- prepare_state(state, qubits=None, label=None, normalize=False)#
Prepare qubits in a specific state.
This class implements a state preparing unitary. Unlike
qiskit.extensions.Initialize
it does not reset the qubits first.- Parameter:
state (str or list or int or Statevector) –
Statevector: Statevector to initialize to.
str: labels of basis states of the Pauli eigenstates Z, X, Y. See
Statevector.from_label()
. Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label ‚01‘ initializes the qubit zero to \(|1\rangle\) and the qubit one to \(|0\rangle\).list: vector of complex amplitudes to initialize to.
int: an integer that is used as a bitmap indicating which qubits to initialize to \(|1\rangle\). Example: setting params to 5 would initialize qubit 0 and qubit 2 to \(|1\rangle\) and qubit 1 to \(|0\rangle\).
qubits (QuantumRegister or Qubit or int) –
QuantumRegister: A list of qubits to be initialized [Default: None].
Qubit: Single qubit to be initialized [Default: None].
int: Index of qubit to be initialized [Default: None].
list: Indexes of qubits to be initialized [Default: None].
label (str) – An optional label for the gate
normalize (bool) – Whether to normalize an input array to a unit vector.
- Rückgabe:
a handle to the instruction that was just initialized
- Rückgabetyp:
Examples
Prepare a qubit in the state \((|0\rangle - |1\rangle) / \sqrt{2}\).
import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(1) circuit.prepare_state([1/np.sqrt(2), -1/np.sqrt(2)], 0) circuit.draw()
output:
┌─────────────────────────────────────┐ q_0: ┤ State Preparation(0.70711,-0.70711) ├ └─────────────────────────────────────┘
Prepare from a string two qubits in the state \(|10\rangle\). The order of the labels is reversed with respect to qubit index. More information about labels for basis states are in
Statevector.from_label()
.import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.prepare_state('01', circuit.qubits) circuit.draw()
output:
┌─────────────────────────┐ q_0: ┤0 ├ │ State Preparation(0,1) │ q_1: ┤1 ├ └─────────────────────────┘
Initialize two qubits from an array of complex amplitudes .. code-block:
import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.prepare_state([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits) circuit.draw()
output:
┌───────────────────────────────────────────┐ q_0: ┤0 ├ │ State Preparation(0,0.70711,-0.70711j,0) │ q_1: ┤1 ├ └───────────────────────────────────────────┘
- qasm(formatted=False, filename=None, encoding=None)[Quellcode]#
Return OpenQASM string.
- Parameter:
formatted (bool) – Return formatted OpenQASM 2.0 string.
filename (str) – Save OpenQASM 2.0 to file with name ‚filename‘.
encoding (str) – Optionally specify the encoding to use for the output file if
filename
is specified. By default this is set to the system’s default encoding (ie whateverlocale.getpreferredencoding()
returns) and can be set to any valid codec or alias from stdlib’s codec module
- Rückgabe:
If formatted=False.
- Rückgabetyp:
- Verursacht:
MissingOptionalLibraryError – If pygments is not installed and
formatted
isTrue
.QASM2ExportError – If circuit has free parameters.
QASM2ExportError – If an operation that has no OpenQASM 2 representation is encountered.
- qbit_argument_conversion(qubit_representation)[Quellcode]#
Converts several qubit representations (such as indexes, range, etc.) into a list of qubits.
- Parameter:
qubit_representation (Object) – representation to expand
- Rückgabe:
the resolved instances of the qubits.
- Rückgabetyp:
List(Qubit)
- qubit_duration(*qubits)[Quellcode]#
Return the duration between the start and stop time of the first and last instructions, excluding delays, over the supplied qubits. Its time unit is
self.unit
.
- qubit_start_time(*qubits)[Quellcode]#
Return the start time of the first instruction, excluding delays, over the supplied qubits. Its time unit is
self.unit
.Return 0 if there are no instructions over qubits
- Parameter:
- Rückgabe:
Return the start time of the first instruction, excluding delays, over the qubits
- Verursacht:
CircuitError – if
self
is a not-yet scheduled circuit.- Rückgabetyp:
- qubit_stop_time(*qubits)[Quellcode]#
Return the stop time of the last instruction, excluding delays, over the supplied qubits. Its time unit is
self.unit
.Return 0 if there are no instructions over qubits
- Parameter:
- Rückgabe:
Return the stop time of the last instruction, excluding delays, over the qubits
- Verursacht:
CircuitError – if
self
is a not-yet scheduled circuit.- Rückgabetyp:
- r(theta, phi, qubit)[Quellcode]#
Apply
RGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
theta (ParameterExpression | float) – The angle of the rotation.
phi (ParameterExpression | float) – The angle of the axis of rotation in the x-y plane.
qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- rcccx(control_qubit1, control_qubit2, control_qubit3, target_qubit)[Quellcode]#
Apply
RC3XGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit1 (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) used as the first control.
control_qubit2 (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) used as the second control.
control_qubit3 (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) used as the third control.
target_qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) targeted by the gate.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- rccx(control_qubit1, control_qubit2, target_qubit)[Quellcode]#
Apply
RCCXGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit1 (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) used as the first control.
control_qubit2 (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) used as the second control.
target_qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) targeted by the gate.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- remove_final_measurements(inplace=True)[Quellcode]#
Removes final measurements and barriers on all qubits if they are present. Deletes the classical registers that were used to store the values from these measurements that become idle as a result of this operation, and deletes classical bits that are referenced only by removed registers, or that aren’t referenced at all but have become idle as a result of this operation.
Measurements and barriers are considered final if they are followed by no other operations (aside from other measurements or barriers.)
- Parameter:
inplace (bool) – All measurements removed inplace or return new circuit.
- Rückgabe:
Returns the resulting circuit when
inplace=False
, else None.- Rückgabetyp:
- repeat(reps)[Quellcode]#
Repeat this circuit
reps
times.- Parameter:
reps (int) – How often this circuit should be repeated.
- Rückgabe:
A circuit containing
reps
repetitions of this circuit.- Rückgabetyp:
- reset(qubit)[Quellcode]#
Reset the quantum bit(s) to their default state.
- reverse_bits()[Quellcode]#
Return a circuit with the opposite order of wires.
The circuit is „vertically“ flipped. If a circuit is defined over multiple registers, the resulting circuit will have the same registers but with their order flipped.
This method is useful for converting a circuit written in little-endian convention to the big-endian equivalent, and vice versa.
- Rückgabe:
the circuit with reversed bit order.
- Rückgabetyp:
Examples
input:
┌───┐ a_0: ┤ H ├──■───────────────── └───┘┌─┴─┐ a_1: ─────┤ X ├──■──────────── └───┘┌─┴─┐ a_2: ──────────┤ X ├──■─────── └───┘┌─┴─┐ b_0: ───────────────┤ X ├──■── └───┘┌─┴─┐ b_1: ────────────────────┤ X ├ └───┘
output:
┌───┐ b_0: ────────────────────┤ X ├ ┌───┐└─┬─┘ b_1: ───────────────┤ X ├──■── ┌───┐└─┬─┘ a_0: ──────────┤ X ├──■─────── ┌───┐└─┬─┘ a_1: ─────┤ X ├──■──────────── ┌───┐└─┬─┘ a_2: ┤ H ├──■───────────────── └───┘
- reverse_ops()[Quellcode]#
Reverse the circuit by reversing the order of instructions.
This is done by recursively reversing all instructions. It does not invert (adjoint) any gate.
- Rückgabe:
the reversed circuit.
- Rückgabetyp:
Examples
input:
┌───┐ q_0: ┤ H ├─────■────── └───┘┌────┴─────┐ q_1: ─────┤ RX(1.57) ├ └──────────┘
output:
┌───┐ q_0: ─────■──────┤ H ├ ┌────┴─────┐└───┘ q_1: ┤ RX(1.57) ├───── └──────────┘
- rv(vx, vy, vz, qubit)[Quellcode]#
Apply
RVGate
.For the full matrix form of this gate, see the underlying gate documentation.
Rotation around an arbitrary rotation axis \(v\), where \(|v|\) is the angle of rotation in radians.
- Parameter:
vx (ParameterExpression | float) – x-component of the rotation axis.
vy (ParameterExpression | float) – y-component of the rotation axis.
vz (ParameterExpression | float) – z-component of the rotation axis.
qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- rx(theta, qubit, label=None)[Quellcode]#
Apply
RXGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
theta (ParameterValueType) – The rotation angle of the gate.
qubit (QubitSpecifier) – The qubit(s) to apply the gate to.
label (str | None) – The string label of the gate in the circuit.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- rxx(theta, qubit1, qubit2)[Quellcode]#
Apply
RXXGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- ry(theta, qubit, label=None)[Quellcode]#
Apply
RYGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
theta (ParameterValueType) – The rotation angle of the gate.
qubit (QubitSpecifier) – The qubit(s) to apply the gate to.
label (str | None) – The string label of the gate in the circuit.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- ryy(theta, qubit1, qubit2)[Quellcode]#
Apply
RYYGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- rz(phi, qubit)[Quellcode]#
Apply
RZGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
phi (ParameterExpression | float) – The rotation angle of the gate.
qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- rzx(theta, qubit1, qubit2)[Quellcode]#
Apply
RZXGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- rzz(theta, qubit1, qubit2)[Quellcode]#
Apply
RZZGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- s(qubit)[Quellcode]#
Apply
SGate
.For the full matrix form of this gate, see the underlying gate documentation.
- sdg(qubit)[Quellcode]#
Apply
SdgGate
.For the full matrix form of this gate, see the underlying gate documentation.
- size(filter_function=<function QuantumCircuit.<lambda>>)[Quellcode]#
Returns total number of instructions in circuit.
- Parameter:
filter_function (callable) – a function to filter out some instructions. Should take as input a tuple of (Instruction, list(Qubit), list(Clbit)). By default filters out „directives“, such as barrier or snapshot.
- Rückgabe:
Total number of gate operations.
- Rückgabetyp:
- snapshot(label, snapshot_type='statevector', qubits=None, params=None)#
Take a statevector snapshot of the internal simulator representation. Works on all qubits, and prevents reordering (like barrier).
For other types of snapshots use the Snapshot extension directly.
- Parameter:
- Rückgabe:
with attached command
- Rückgabetyp:
- Verursacht:
ExtensionError – malformed command
- squ(unitary_matrix, qubit, mode='ZYZ', up_to_diagonal=False)#
Decompose an arbitrary 2*2 unitary into three rotation gates.
Note that the decomposition is up to a global phase shift. (This is a well known decomposition which can be found for example in Nielsen and Chuang’s book „Quantum computation and quantum information“.)
- Parameter:
unitary_matrix (ndarray) – 2*2 unitary (given as a (complex) ndarray).
qubit (QuantumRegister or Qubit) – The qubit which the gate is acting on.
mode (string) – determines the used decomposition by providing the rotation axes. The allowed modes are: „ZYZ“ (default)
up_to_diagonal (bool) – if set to True, the single-qubit unitary is decomposed up to a diagonal matrix, i.e. a unitary u‘ is implemented such that there exists a 2*2 diagonal gate d with u = d.dot(u‘)
- Rückgabe:
The single-qubit unitary instruction attached to the circuit.
- Rückgabetyp:
- Verursacht:
QiskitError – if the format is wrong; if the array u is not unitary
- swap(qubit1, qubit2)[Quellcode]#
Apply
SwapGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- switch(target: Clbit | ClassicalRegister | int | slice | Sequence[Clbit | int], cases: None, qubits: None, clbits: None, *, label: str | None) qiskit.circuit.controlflow.switch_case.SwitchContext [Quellcode]#
- switch(target: Clbit | ClassicalRegister | int | slice | Sequence[Clbit | int], cases: Iterable[Tuple[Any, QuantumCircuit]], qubits: Sequence[Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]], clbits: Sequence[Clbit | ClassicalRegister | int | slice | Sequence[Clbit | int]], *, label: str | None) InstructionSet
Create a
switch
/case
structure on this circuit.There are two forms for calling this function. If called with all its arguments (with the possible exception of
label
), it will create aSwitchCaseOp
with the given case structure. Ifcases
(andqubits
andclbits
) are not passed, then this acts as a context manager, which will automatically build aSwitchCaseOp
when the scope finishes. In this form, you do not need to keep track of the qubits or clbits you are using, because the scope will handle it for you.Example usage:
from qiskit.circuit import QuantumCircuit, ClassicalRegister, QuantumRegister qreg = QuantumRegister(3) creg = ClassicalRegister(3) qc = QuantumCircuit(qreg, creg) qc.h([0, 1, 2]) qc.measure([0, 1, 2], [0, 1, 2]) with qc.switch(creg) as case: with case(0): qc.x(0) with case(1, 2): qc.z(1) with case(case.DEFAULT): qc.cx(0, 1)
- Parameter:
target (Union[ClassicalRegister, Clbit]) – The classical value to switch one. This must be integer-like.
cases (Iterable[Tuple[Any, QuantumCircuit]]) – A sequence of case specifiers. Each tuple defines one case body (the second item). The first item of the tuple can be either a single integer value, the special value
CASE_DEFAULT
, or a tuple of several integer values. Each of the integer values will be tried in turn; control will then pass to the body corresponding to the first match.CASE_DEFAULT
matches all possible values. Omit in context-manager form.qubits (Sequence[Qubit]) – The circuit qubits over which all case bodies execute. Omit in context-manager form.
clbits (Sequence[Clbit]) – The circuit clbits over which all case bodies execute. Omit in context-manager form.
label (Optional[str]) – The string label of the instruction in the circuit.
- Rückgabe:
If used in context-manager mode, then this should be used as a
with
resource, which will return an object that can be repeatedly entered to produce cases for the switch statement. If the full form is used, then this returns a handle to the instructions created.- Rückgabetyp:
InstructionSet or SwitchCaseContext
- Verursacht:
CircuitError – if an incorrect calling convention is used.
- sx(qubit)[Quellcode]#
Apply
SXGate
.For the full matrix form of this gate, see the underlying gate documentation.
- sxdg(qubit)[Quellcode]#
Apply
SXdgGate
.For the full matrix form of this gate, see the underlying gate documentation.
- t(qubit)[Quellcode]#
Apply
TGate
.For the full matrix form of this gate, see the underlying gate documentation.
- tdg(qubit)[Quellcode]#
Apply
TdgGate
.For the full matrix form of this gate, see the underlying gate documentation.
- tensor(other, inplace=False)[Quellcode]#
Tensor
self
withother
.Remember that in the little-endian convention the leftmost operation will be at the bottom of the circuit. See also the docs for more information.
┌────────┐ ┌─────┐ ┌─────┐ q_0: ┤ bottom ├ ⊗ q_0: ┤ top ├ = q_0: ─┤ top ├── └────────┘ └─────┘ ┌┴─────┴─┐ q_1: ┤ bottom ├ └────────┘
- Parameter:
other (QuantumCircuit) – The other circuit to tensor this circuit with.
inplace (bool) – If True, modify the object. Otherwise return composed circuit.
- Rückgabetyp:
QuantumCircuit | None
Examples
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
- Rückgabe:
The tensored circuit (returns None if inplace==True).
- Rückgabetyp:
- to_gate(parameter_map=None, label=None)[Quellcode]#
Create a Gate out of this circuit.
- Parameter:
- Rückgabe:
a composite gate encapsulating this circuit (can be decomposed back)
- Rückgabetyp:
- to_instruction(parameter_map=None, label=None)[Quellcode]#
Create an Instruction out of this circuit.
- Parameter:
- Rückgabe:
a composite instruction encapsulating this circuit (can be decomposed back)
- Rückgabetyp:
- toffoli(control_qubit1, control_qubit2, target_qubit)[Quellcode]#
Apply
CCXGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
control_qubit1 (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) used as the first control.
control_qubit2 (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) used as the second control.
target_qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) targeted by the gate.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
Siehe auch
QuantumCircuit.ccx: the same gate with a different name.
- u(theta, phi, lam, qubit)[Quellcode]#
Apply
UGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
theta (ParameterExpression | float) – The \(\theta\) rotation angle of the gate.
phi (ParameterExpression | float) – The \(\phi\) rotation angle of the gate.
lam (ParameterExpression | float) – The \(\lambda\) rotation angle of the gate.
qubit (Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]) – The qubit(s) to apply the gate to.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- uc(gate_list, q_controls, q_target, up_to_diagonal=False)#
Attach a uniformly controlled gates (also called multiplexed gates) to a circuit.
The decomposition was introduced by Bergholm et al. in https://arxiv.org/pdf/quant-ph/0410066.pdf.
- Parameter:
gate_list (list[ndarray]) – list of two qubit unitaries [U_0,…,U_{2^k-1}], where each single-qubit unitary U_i is a given as a 2*2 array
q_controls (QuantumRegister|list[(QuantumRegister,int)]) – list of k control qubits. The qubits are ordered according to their significance in the computational basis. For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the unitary U_0 is performed if q[1] and q[2] are in the state zero, U_1 is performed if q[2] is in the state zero and q[1] is in the state one, and so on
q_target (QuantumRegister|(QuantumRegister,int)) – target qubit, where we act on with the single-qubit gates.
up_to_diagonal (bool) – If set to True, the uniformly controlled gate is decomposed up to a diagonal gate, i.e. a unitary u‘ is implemented such that there exists a diagonal gate d with u = d.dot(u‘), where the unitary u describes the uniformly controlled gate
- Rückgabe:
the uniformly controlled gate is attached to the circuit.
- Rückgabetyp:
- Verursacht:
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
- ucrx(angle_list, q_controls, q_target)#
Attach a uniformly controlled (also called multiplexed) Rx rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
- Parameter:
angle_list (List[float]) – list of (real) rotation angles \([a_0,...,a_{2^k-1}]\)
q_controls (Sequence[QubitSpecifier]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRx(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRx(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so onq_target (QubitSpecifier) – target qubit, where we act on with the single-qubit rotation gates
- Rückgabe:
the uniformly controlled rotation gate is attached to the circuit.
- Rückgabetyp:
- Verursacht:
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
- ucry(angle_list, q_controls, q_target)#
Attach a uniformly controlled (also called multiplexed) Ry rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
- Parameter:
angle_list (List[float]) – list of (real) rotation angles \([a_0,...,a_{2^k-1}]\)
q_controls (Sequence[QubitSpecifier]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRy(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRy(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so onq_target (QubitSpecifier) – target qubit, where we act on with the single-qubit rotation gates
- Rückgabe:
the uniformly controlled rotation gate is attached to the circuit.
- Rückgabetyp:
- Verursacht:
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
- ucrz(angle_list, q_controls, q_target)#
Attach a uniformly controlled (also called multiplexed gates) Rz rotation gate to a circuit.
The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.
- Parameter:
angle_list (List[float]) – list of (real) rotation angles \([a_0,...,a_{2^k-1}]\)
q_controls (Sequence[QubitSpecifier]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if
q_controls=[q[0],q[1]]
(withq = QuantumRegister(2)
), the rotationRx(a_0)
is performed ifq[0]
andq[1]
are in the state zero, the rotationRx(a_1)
is performed ifq[0]
is in the state one andq[1]
is in the state zero, and so onq_target (QubitSpecifier) – target qubit, where we act on with the single-qubit rotation gates
- Rückgabe:
the uniformly controlled rotation gate is attached to the circuit.
- Rückgabetyp:
- Verursacht:
QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type
- unitary(obj, qubits, label=None)#
Apply unitary gate specified by
obj
toqubits
.- Parameter:
- Rückgabe:
The quantum circuit.
- Rückgabetyp:
- Verursacht:
ExtensionError – if input data is not an N-qubit unitary operator.
Example
Apply a gate specified by a unitary matrix to a quantum circuit
from qiskit import QuantumCircuit matrix = [[0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0]] circuit = QuantumCircuit(2) circuit.unitary(matrix, [0, 1])
- while_loop(condition: tuple[ClassicalRegister | Clbit, int] | expr.Expr, body: None, qubits: None, clbits: None, *, label: str | None) qiskit.circuit.controlflow.while_loop.WhileLoopContext [Quellcode]#
- while_loop(condition: tuple[ClassicalRegister | Clbit, int] | expr.Expr, body: QuantumCircuit, qubits: Sequence[Qubit | QuantumRegister | int | slice | Sequence[Qubit | int]], clbits: Sequence[Clbit | ClassicalRegister | int | slice | Sequence[Clbit | int]], *, label: str | None) InstructionSet
Create a
while
loop on this circuit.There are two forms for calling this function. If called with all its arguments (with the possible exception of
label
), it will create aWhileLoopOp
with the givenbody
. Ifbody
(andqubits
andclbits
) are not passed, then this acts as a context manager, which will automatically build aWhileLoopOp
when the scope finishes. In this form, you do not need to keep track of the qubits or clbits you are using, because the scope will handle it for you.Example usage:
from qiskit.circuit import QuantumCircuit, Clbit, Qubit bits = [Qubit(), Qubit(), Clbit()] qc = QuantumCircuit(bits) with qc.while_loop((bits[2], 0)): qc.h(0) qc.cx(0, 1) qc.measure(0, 0)
- Parameter:
condition (Tuple[Union[ClassicalRegister, Clbit], int]) – An equality condition to be checked prior to executing
body
. The left-hand side of the condition must be aClassicalRegister
or aClbit
, and the right-hand side must be an integer or boolean.body (Optional[QuantumCircuit]) – The loop body to be repeatedly executed. Omit this to use the context-manager mode.
qubits (Optional[Sequence[Qubit]]) – The circuit qubits over which the loop body should be run. Omit this to use the context-manager mode.
clbits (Optional[Sequence[Clbit]]) – The circuit clbits over which the loop body should be run. Omit this to use the context-manager mode.
label (Optional[str]) – The string label of the instruction in the circuit.
- Rückgabe:
If used in context-manager mode, then this should be used as a
with
resource, which will infer the block content and operands on exit. If the full form is used, then this returns a handle to the instructions created.- Rückgabetyp:
InstructionSet or WhileLoopContext
- Verursacht:
CircuitError – if an incorrect calling convention is used.
- width()[Quellcode]#
Return number of qubits plus clbits in circuit.
- Rückgabe:
Width of circuit.
- Rückgabetyp:
- x(qubit, label=None)[Quellcode]#
Apply
XGate
.For the full matrix form of this gate, see the underlying gate documentation.
- Parameter:
qubit (QubitSpecifier) – The qubit(s) to apply the gate to.
label (str | None) – The string label of the gate in the circuit.
- Rückgabe:
A handle to the instructions created.
- Rückgabetyp:
- y(qubit)[Quellcode]#
Apply
YGate
.For the full matrix form of this gate, see the underlying gate documentation.
- z(qubit)[Quellcode]#
Apply
ZGate
.For the full matrix form of this gate, see the underlying gate documentation.