iSwapGate#

class qiskit.circuit.library.iSwapGate(label=None)[Quellcode]#

Bases: Gate

iSWAP gate.

A 2-qubit XX+YY interaction. This is a Clifford and symmetric gate. Its action is to swap two qubit states and phase the \(|01\rangle\) and \(|10\rangle\) amplitudes by i.

Can be applied to a QuantumCircuit with the iswap() method.

Circuit Symbol:

q_0: ─⨂─
      β”‚
q_1: ─⨂─

Reference Implementation:

     β”Œβ”€β”€β”€β”β”Œβ”€β”€β”€β”     β”Œβ”€β”€β”€β”
q_0: ─ S β”œβ”€ H β”œβ”€β”€β– β”€β”€β”€ X β”œβ”€β”€β”€β”€β”€
     β”œβ”€β”€β”€β”€β””β”€β”€β”€β”˜β”Œβ”€β”΄β”€β”β””β”€β”¬β”€β”˜β”Œβ”€β”€β”€β”
q_1: ─ S β”œβ”€β”€β”€β”€β”€β”€ X β”œβ”€β”€β– β”€β”€β”€ H β”œ
     β””β”€β”€β”€β”˜     β””β”€β”€β”€β”˜     β””β”€β”€β”€β”˜

Matrix Representation:

\[\begin{split}iSWAP = R_{XX+YY}\left(-\frac{\pi}{2}\right) = \exp\left(i \frac{\pi}{4} \left(X{\otimes}X+Y{\otimes}Y\right)\right) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\end{split}\]

This gate is equivalent to a SWAP up to a diagonal.

\[\begin{split}iSWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} . \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\end{split}\]

Create new iSwap gate.

Attributes

condition_bits#

Get Clbits in condition.

decompositions#

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition#

Return definition in terms of other basic gates.

duration#

Get the duration.

label#

Return instruction label

name#

Return the name.

num_clbits#

Return the number of clbits.

num_qubits#

Return the number of qubits.

params#

return instruction params.

unit#

Get the time unit of duration.

Methods

power(exponent)[Quellcode]#

Raise gate to a power.