PauliTwoDesign#

class qiskit.circuit.library.PauliTwoDesign(num_qubits=None, reps=3, seed=None, insert_barriers=False, name='PauliTwoDesign')[Quellcode]#

Bases: TwoLocal

The Pauli Two-Design ansatz.

This class implements a particular form of a 2-design circuit [1], which is frequently studied in quantum machine learning literature, such as e.g. the investigating of Barren plateaus in variational algorithms [2].

The circuit consists of alternating rotation and entanglement layers with an initial layer of \(\sqrt{H} = RY(\pi/4)\) gates. The rotation layers contain single qubit Pauli rotations, where the axis is chosen uniformly at random to be X, Y or Z. The entanglement layers is compromised of pairwise CZ gates with a total depth of 2.

For instance, the circuit could look like this (but note that choosing a different seed yields different Pauli rotations).

     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β–‘ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β–‘  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
q_0: ─ RY(Ο€/4) β”œβ”€ RZ(ΞΈ[0]) β”œβ”€β– β”€β”€β”€β”€β”€β–‘β”€β”€ RY(ΞΈ[4]) β”œβ”€β– β”€β”€β”€β”€β”€β–‘β”€β”€β”€ RZ(ΞΈ[8]) β”œ
     β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚     β–‘ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚     β–‘  β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
q_1: ─ RY(Ο€/4) β”œβ”€ RZ(ΞΈ[1]) β”œβ”€β– β”€β”€β– β”€β”€β–‘β”€β”€ RY(ΞΈ[5]) β”œβ”€β– β”€β”€β– β”€β”€β–‘β”€β”€β”€ RX(ΞΈ[9]) β”œ
     β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€    β”‚  β–‘ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€    β”‚  β–‘ β”Œβ”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
q_2: ─ RY(Ο€/4) β”œβ”€ RX(ΞΈ[2]) β”œβ”€β– β”€β”€β– β”€β”€β–‘β”€β”€ RY(ΞΈ[6]) β”œβ”€β– β”€β”€β– β”€β”€β–‘β”€β”€ RX(ΞΈ[10]) β”œ
     β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚     β–‘ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚     β–‘ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
q_3: ─ RY(Ο€/4) β”œβ”€ RZ(ΞΈ[3]) β”œβ”€β– β”€β”€β”€β”€β”€β–‘β”€β”€ RX(ΞΈ[7]) β”œβ”€β– β”€β”€β”€β”€β”€β–‘β”€β”€ RY(ΞΈ[11]) β”œ
     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β–‘ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β–‘ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Examples

from qiskit.circuit.library import PauliTwoDesign
circuit = PauliTwoDesign(4, reps=2, seed=5, insert_barriers=True)
circuit.draw('mpl')

(Source code)

../_images/qiskit-circuit-library-PauliTwoDesign-1.png

References

[1]: Nakata et al., Unitary 2-designs from random X- and Z-diagonal unitaries.

arXiv:1502.07514

[2]: McClean et al., Barren plateaus in quantum neural network training landscapes.

arXiv:1803.11173

Parameter:
  • num_qubits (int | None) – The number of qubits of the two-local circuit.

  • rotation_blocks – The gates used in the rotation layer. Can be specified via the name of a gate (e.g. 'ry') or the gate type itself (e.g. RYGate). If only one gate is provided, the gate same gate is applied to each qubit. If a list of gates is provided, all gates are applied to each qubit in the provided order. See the Examples section for more detail.

  • entanglement_blocks – The gates used in the entanglement layer. Can be specified in the same format as rotation_blocks.

  • entanglement – Specifies the entanglement structure. Can be a string ('full', 'linear', 'reverse_linear', 'circular' or 'sca'), a list of integer-pairs specifying the indices of qubits entangled with one another, or a callable returning such a list provided with the index of the entanglement layer. Default to 'full' entanglement. Note that if entanglement_blocks = 'cx', then 'full' entanglement provides the same unitary as 'reverse_linear' but the latter option has fewer entangling gates. See the Examples section for more detail.

  • reps (int) – Specifies how often a block consisting of a rotation layer and entanglement layer is repeated.

  • skip_unentangled_qubits – If True, the single qubit gates are only applied to qubits that are entangled with another qubit. If False, the single qubit gates are applied to each qubit in the ansatz. Defaults to False.

  • skip_final_rotation_layer – If False, a rotation layer is added at the end of the ansatz. If True, no rotation layer is added.

  • parameter_prefix – The parameterized gates require a parameter to be defined, for which we use instances of Parameter. The name of each parameter will be this specified prefix plus its index.

  • insert_barriers (bool) – If True, barriers are inserted in between each layer. If False, no barriers are inserted. Defaults to False.

  • initial_state – A QuantumCircuit object to prepend to the circuit.

  • flatten – Set this to True to output a flat circuit instead of nesting it inside multiple layers of gate objects. By default currently the contents of the output circuit will be wrapped in nested objects for cleaner visualization. However, if you’re using this circuit for anything besides visualization its strongly recommended to set this flag to True to avoid a large performance overhead for parameter binding.

Attributes

ancillas#

Returns a list of ancilla bits in the order that the registers were added.

calibrations#

Return calibration dictionary.

The custom pulse definition of a given gate is of the form {'gate_name': {(qubits, params): schedule}}

clbits#

Returns a list of classical bits in the order that the registers were added.

data#
entanglement#

Get the entanglement strategy.

RΓΌckgabe:

The entanglement strategy, see get_entangler_map() for more detail on how the format is interpreted.

entanglement_blocks#

The blocks in the entanglement layers.

RΓΌckgabe:

The blocks in the entanglement layers.

extension_lib = 'include "qelib1.inc";'#
flatten#

Returns whether the circuit is wrapped in nested gates/instructions or flattened.

global_phase#

Return the global phase of the circuit in radians.

header = 'OPENQASM 2.0;'#
initial_state#

Return the initial state that is added in front of the n-local circuit.

RΓΌckgabe:

The initial state.

insert_barriers#

If barriers are inserted in between the layers or not.

RΓΌckgabe:

True, if barriers are inserted in between the layers, False if not.

instances = 192#
layout#

Return any associated layout information about the circuit

This attribute contains an optional TranspileLayout object. This is typically set on the output from transpile() or PassManager.run() to retain information about the permutations caused on the input circuit by transpilation.

There are two types of permutations caused by the transpile() function, an initial layout which permutes the qubits based on the selected physical qubits on the Target, and a final layout which is an output permutation caused by SwapGates inserted during routing.

metadata#

The user provided metadata associated with the circuit.

The metadata for the circuit is a user provided dict of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.

num_ancillas#

Return the number of ancilla qubits.

num_clbits#

Return number of classical bits.

num_layers#

Return the number of layers in the n-local circuit.

RΓΌckgabe:

The number of layers in the circuit.

num_parameters#
num_parameters_settable#

Return the number of settable parameters.

RΓΌckgabe:

The number of possibly distinct parameters.

num_qubits#

Returns the number of qubits in this circuit.

RΓΌckgabe:

The number of qubits.

op_start_times#

Return a list of operation start times.

This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.

RΓΌckgabe:

List of integers representing instruction start times. The index corresponds to the index of instruction in QuantumCircuit.data.

Verursacht:

AttributeError – When circuit is not scheduled.

ordered_parameters#

The parameters used in the underlying circuit.

This includes float values and duplicates.

Examples

>>> # prepare circuit ...
>>> print(nlocal)
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
q_0: ─ Ry(1) β”œβ”€ Ry(ΞΈ[1]) β”œβ”€ Ry(ΞΈ[1]) β”œβ”€ Ry(ΞΈ[3]) β”œ
     β””β”€β”€β”€β”€β”€β”€β”€β”˜β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
>>> nlocal.parameters
{Parameter(ΞΈ[1]), Parameter(ΞΈ[3])}
>>> nlocal.ordered_parameters
[1, Parameter(ΞΈ[1]), Parameter(ΞΈ[1]), Parameter(ΞΈ[3])]
RΓΌckgabe:

The parameters objects used in the circuit.

parameter_bounds#

The parameter bounds for the unbound parameters in the circuit.

RΓΌckgabe:

A list of pairs indicating the bounds, as (lower, upper). None indicates an unbounded parameter in the corresponding direction. If None is returned, problem is fully unbounded.

parameters#
preferred_init_points#

The initial points for the parameters. Can be stored as initial guess in optimization.

RΓΌckgabe:

The initial values for the parameters, or None, if none have been set.

prefix = 'circuit'#
qregs: list[QuantumRegister]#

A list of the quantum registers associated with the circuit.

qubits#

Returns a list of quantum bits in the order that the registers were added.

reps#

The number of times rotation and entanglement block are repeated.

RΓΌckgabe:

The number of repetitions.

rotation_blocks#

The blocks in the rotation layers.

RΓΌckgabe:

The blocks in the rotation layers.