U2Gate#
- class qiskit.circuit.library.U2Gate(phi, lam, label=None)[Quellcode]#
Bases:
Gate
Single-qubit rotation about the X+Z axis.
Implemented using one X90 pulse on IBM Quantum systems:
Warnung
This gate is deprecated. Instead, the following replacements should be used
\[U2(\phi, \lambda) = U\left(\frac{\pi}{2}, \phi, \lambda\right)\]circuit = QuantumCircuit(1) circuit.u(pi/2, phi, lambda)
Circuit symbol:
βββββββββββ q_0: β€ U2(Ο,Ξ») β βββββββββββ
Matrix Representation:
\[\begin{split}U2(\phi, \lambda) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -e^{i\lambda} \\ e^{i\phi} & e^{i(\phi+\lambda)} \end{pmatrix}\end{split}\]Examples:
\[U2(\phi,\lambda) = e^{i \frac{\phi + \lambda}{2}}RZ(\phi) RY\left(\frac{\pi}{2}\right) RZ(\lambda) = e^{- i\frac{\pi}{4}} P\left(\frac{\pi}{2} + \phi\right) \sqrt{X} P\left(\lambda- \frac{\pi}{2}\right)\]\[U2(0, \pi) = H\]\[U2(0, 0) = RY(\pi/2)\]\[U2(-\pi/2, \pi/2) = RX(\pi/2)\]Siehe auch
U3Gate
: U3 is a generalization of U2 that covers all single-qubit rotations, using two X90 pulses.Create new U2 gate.
Attributes
- condition_bits#
Get Clbits in condition.
- decompositions#
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
- definition#
Return definition in terms of other basic gates.
- duration#
Get the duration.
- label#
Return instruction label
- name#
Return the name.
- num_clbits#
Return the number of clbits.
- num_qubits#
Return the number of qubits.
- params#
return instruction params.
- unit#
Get the time unit of duration.
Methods
- inverse()[Quellcode]#
Return inverted U2 gate.
\(U2(\phi, \lambda)^{\dagger} =U2(-\lambda-\pi, -\phi+\pi)\))