PauliFeatureMap#
- class qiskit.circuit.library.PauliFeatureMap(feature_dimension=None, reps=2, entanglement='full', alpha=2.0, paulis=None, data_map_func=None, parameter_prefix='x', insert_barriers=False, name='PauliFeatureMap')[Quellcode]#
Bases:
NLocal
The Pauli Expansion circuit.
The Pauli Expansion circuit is a data encoding circuit that transforms input data \(\vec{x} \in \mathbb{R}^n\), where n is the
feature_dimension
, as\[U_{\Phi(\vec{x})}=\exp\left(i\sum_{S \in \mathcal{I}} \phi_S(\vec{x})\prod_{i\in S} P_i\right).\]Here, \(S\) is a set of qubit indices that describes the connections in the feature map, \(\mathcal{I}\) is a set containing all these index sets, and \(P_i \in \{I, X, Y, Z\}\). Per default the data-mapping \(\phi_S\) is
\[\begin{split}\phi_S(\vec{x}) = \begin{cases} x_i \text{ if } S = \{i\} \\ \prod_{j \in S} (\pi - x_j) \text{ if } |S| > 1 \end{cases}.\end{split}\]The possible connections can be set using the
entanglement
andpaulis
arguments. For example, for single-qubit \(Z\) rotations and two-qubit \(YY\) interactions between all qubit pairs, we can set:feature_map = PauliFeatureMap(..., paulis=["Z", "YY"], entanglement="full")
which will produce blocks of the form
βββββββββββββββββββββββββββββββββ βββββββββββββ β€ H ββ€ U1(2.0*x[0]) ββ€ RX(pi/2) ββββ ββββββββββββββββββββββββββββββββββββββββ βββ€ RX(-pi/2) β βββββ€ββββββββββββββββ€ββββββββββββ€βββ΄ββββββββββββββββββββββββββββββββββββββββ΄βββββββββββββββ€ β€ H ββ€ U1(2.0*x[1]) ββ€ RX(pi/2) ββ€ X ββ€ U1(2.0*(pi - x[0])*(pi - x[1])) ββ€ X ββ€ RX(-pi/2) β βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
The circuit contains
reps
repetitions of this transformation.Please refer to
ZFeatureMap
for the case of single-qubit Pauli-\(Z\) rotations and toZZFeatureMap
for the single- and two-qubit Pauli-\(Z\) rotations.Examples
>>> prep = PauliFeatureMap(2, reps=1, paulis=['ZZ']) >>> print(prep) βββββ q_0: β€ H ββββ ββββββββββββββββββββββββββββββββββββββββ ββ βββββ€βββ΄ββββββββββββββββββββββββββββββββββββββββ΄ββ q_1: β€ H ββ€ X ββ€ U1(2.0*(pi - x[0])*(pi - x[1])) ββ€ X β ββββββββββββββββββββββββββββββββββββββββββββββββββ
>>> prep = PauliFeatureMap(2, reps=1, paulis=['Z', 'XX']) >>> print(prep) ββββββββββββββββββββββββββ βββββ q_0: β€ H ββ€ U1(2.0*x[0]) ββ€ H ββββ ββββββββββββββββββββββββββββββββββββββββ βββ€ H β βββββ€ββββββββββββββββ€βββββ€βββ΄ββββββββββββββββββββββββββββββββββββββββ΄βββββββ€ q_1: β€ H ββ€ U1(2.0*x[1]) ββ€ H ββ€ X ββ€ U1(2.0*(pi - x[0])*(pi - x[1])) ββ€ X ββ€ H β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
>>> prep = PauliFeatureMap(2, reps=1, paulis=['ZY']) >>> print(prep) βββββββββββββββββ βββββββββββββ q_0: β€ H ββ€ RX(pi/2) ββββ ββββββββββββββββββββββββββββββββββββββββ βββ€ RX(-pi/2) β βββββ€βββββββββββββββ΄ββββββββββββββββββββββββββββββββββββββββ΄βββββββββββββββ q_1: β€ H ββββββββββββββ€ X ββ€ U1(2.0*(pi - x[0])*(pi - x[1])) ββ€ X ββββββββββββββ βββββ βββββββββββββββββββββββββββββββββββββββββββββ
>>> from qiskit.circuit.library import EfficientSU2 >>> prep = PauliFeatureMap(3, reps=3, paulis=['Z', 'YY', 'ZXZ']) >>> wavefunction = EfficientSU2(3) >>> classifier = prep.compose(wavefunction >>> classifier.num_parameters 27 >>> classifier.count_ops() OrderedDict([('cx', 39), ('rx', 36), ('u1', 21), ('h', 15), ('ry', 12), ('rz', 12)])
References:
[1] Havlicek et al. Supervised learning with quantum enhanced feature spaces, Nature 567, 209-212 (2019).
Create a new Pauli expansion circuit.
- Parameter:
feature_dimension (int | None) β Number of qubits in the circuit.
reps (int) β The number of repeated circuits.
entanglement (str | List[List[int]] | Callable[[int], List[int]]) β Specifies the entanglement structure. Refer to
NLocal
for detail.alpha (float) β The Pauli rotation factor, multiplicative to the pauli rotations
paulis (List[str] | None) β A list of strings for to-be-used paulis. If None are provided,
['Z', 'ZZ']
will be used.data_map_func (Callable[[ndarray], float] | None) β A mapping function for data x which can be supplied to override the default mapping from
self_product()
.parameter_prefix (str) β The prefix used if default parameters are generated.
insert_barriers (bool) β If True, barriers are inserted in between the evolution instructions and hadamard layers.
Attributes
- alpha#
The Pauli rotation factor (alpha).
- RΓΌckgabe:
The Pauli rotation factor.
- ancillas#
Returns a list of ancilla bits in the order that the registers were added.
- calibrations#
Return calibration dictionary.
The custom pulse definition of a given gate is of the form
{'gate_name': {(qubits, params): schedule}}
- clbits#
Returns a list of classical bits in the order that the registers were added.
- data#
- entanglement#
Get the entanglement strategy.
- RΓΌckgabe:
The entanglement strategy, see
get_entangler_map()
for more detail on how the format is interpreted.
- entanglement_blocks#
- extension_lib = 'include "qelib1.inc";'#
- feature_dimension#
Returns the feature dimension (which is equal to the number of qubits).
- RΓΌckgabe:
The feature dimension of this feature map.
- flatten#
Returns whether the circuit is wrapped in nested gates/instructions or flattened.
- global_phase#
Return the global phase of the circuit in radians.
- header = 'OPENQASM 2.0;'#
- initial_state#
Return the initial state that is added in front of the n-local circuit.
- RΓΌckgabe:
The initial state.
- insert_barriers#
If barriers are inserted in between the layers or not.
- RΓΌckgabe:
True
, if barriers are inserted in between the layers,False
if not.
- instances = 191#
- layout#
Return any associated layout information about the circuit
This attribute contains an optional
TranspileLayout
object. This is typically set on the output fromtranspile()
orPassManager.run()
to retain information about the permutations caused on the input circuit by transpilation.There are two types of permutations caused by the
transpile()
function, an initial layout which permutes the qubits based on the selected physical qubits on theTarget
, and a final layout which is an output permutation caused bySwapGate
s inserted during routing.
- metadata#
The user provided metadata associated with the circuit.
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
- num_ancillas#
Return the number of ancilla qubits.
- num_clbits#
Return number of classical bits.
- num_layers#
Return the number of layers in the n-local circuit.
- RΓΌckgabe:
The number of layers in the circuit.
- num_parameters#
- num_parameters_settable#
The number of distinct parameters.
- num_qubits#
Returns the number of qubits in this circuit.
- RΓΌckgabe:
The number of qubits.
- op_start_times#
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
- RΓΌckgabe:
List of integers representing instruction start times. The index corresponds to the index of instruction in
QuantumCircuit.data
.- Verursacht:
AttributeError β When circuit is not scheduled.
- ordered_parameters#
The parameters used in the underlying circuit.
This includes float values and duplicates.
Examples
>>> # prepare circuit ... >>> print(nlocal) βββββββββββββββββββββββββββββββββββββββββββββ q_0: β€ Ry(1) ββ€ Ry(ΞΈ[1]) ββ€ Ry(ΞΈ[1]) ββ€ Ry(ΞΈ[3]) β βββββββββββββββββββββββββββββββββββββββββββββ >>> nlocal.parameters {Parameter(ΞΈ[1]), Parameter(ΞΈ[3])} >>> nlocal.ordered_parameters [1, Parameter(ΞΈ[1]), Parameter(ΞΈ[1]), Parameter(ΞΈ[3])]
- RΓΌckgabe:
The parameters objects used in the circuit.
- parameter_bounds#
The parameter bounds for the unbound parameters in the circuit.
- RΓΌckgabe:
A list of pairs indicating the bounds, as (lower, upper). None indicates an unbounded parameter in the corresponding direction. If
None
is returned, problem is fully unbounded.
- parameters#
- paulis#
The Pauli strings used in the entanglement of the qubits.
- RΓΌckgabe:
The Pauli strings as list.
- preferred_init_points#
The initial points for the parameters. Can be stored as initial guess in optimization.
- RΓΌckgabe:
The initial values for the parameters, or None, if none have been set.
- prefix = 'circuit'#
- qregs: list[QuantumRegister]#
A list of the quantum registers associated with the circuit.
- qubits#
Returns a list of quantum bits in the order that the registers were added.
- reps#
The number of times rotation and entanglement block are repeated.
- RΓΌckgabe:
The number of repetitions.
- rotation_blocks#
The blocks in the rotation layers.
- RΓΌckgabe:
The blocks in the rotation layers.
Methods
- pauli_block(pauli_string)[Quellcode]#
Get the Pauli block for the feature map circuit.
- pauli_evolution(pauli_string, time)[Quellcode]#
Get the evolution block for the given pauli string.