Código fonte de qiskit.transpiler.passes.scheduling.padding.dynamical_decoupling

# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Dynamical Decoupling insertion pass."""
from __future__ import annotations

import logging
import numpy as np

from qiskit.circuit import Gate, ParameterExpression, Qubit
from qiskit.circuit.delay import Delay
from qiskit.circuit.library.standard_gates import IGate, UGate, U3Gate
from qiskit.circuit.reset import Reset
from qiskit.dagcircuit import DAGCircuit, DAGNode, DAGInNode, DAGOpNode
from qiskit.quantum_info.operators.predicates import matrix_equal
from qiskit.quantum_info.synthesis import OneQubitEulerDecomposer
from qiskit.transpiler.exceptions import TranspilerError
from qiskit.transpiler.instruction_durations import InstructionDurations
from qiskit.transpiler.passes.optimization import Optimize1qGates
from qiskit.transpiler.target import Target

from .base_padding import BasePadding

logger = logging.getLogger(__name__)


[documentos]class PadDynamicalDecoupling(BasePadding): """Dynamical decoupling insertion pass. This pass works on a scheduled, physical circuit. It scans the circuit for idle periods of time (i.e. those containing delay instructions) and inserts a DD sequence of gates in those spots. These gates amount to the identity, so do not alter the logical action of the circuit, but have the effect of mitigating decoherence in those idle periods. As a special case, the pass allows a length-1 sequence (e.g. [XGate()]). In this case the DD insertion happens only when the gate inverse can be absorbed into a neighboring gate in the circuit (so we would still be replacing Delay with something that is equivalent to the identity). This can be used, for instance, as a Hahn echo. This pass ensures that the inserted sequence preserves the circuit exactly (including global phase). .. plot:: :include-source: import numpy as np from qiskit.circuit import QuantumCircuit from qiskit.circuit.library import XGate from qiskit.transpiler import PassManager, InstructionDurations from qiskit.transpiler.passes import ALAPScheduleAnalysis, PadDynamicalDecoupling from qiskit.visualization import timeline_drawer circ = QuantumCircuit(4) circ.h(0) circ.cx(0, 1) circ.cx(1, 2) circ.cx(2, 3) circ.measure_all() durations = InstructionDurations( [("h", 0, 50), ("cx", [0, 1], 700), ("reset", None, 10), ("cx", [1, 2], 200), ("cx", [2, 3], 300), ("x", None, 50), ("measure", None, 1000)] ) # balanced X-X sequence on all qubits dd_sequence = [XGate(), XGate()] pm = PassManager([ALAPScheduleAnalysis(durations), PadDynamicalDecoupling(durations, dd_sequence)]) circ_dd = pm.run(circ) timeline_drawer(circ_dd) # Uhrig sequence on qubit 0 n = 8 dd_sequence = [XGate()] * n def uhrig_pulse_location(k): return np.sin(np.pi * (k + 1) / (2 * n + 2)) ** 2 spacing = [] for k in range(n): spacing.append(uhrig_pulse_location(k) - sum(spacing)) spacing.append(1 - sum(spacing)) pm = PassManager( [ ALAPScheduleAnalysis(durations), PadDynamicalDecoupling(durations, dd_sequence, qubits=[0], spacing=spacing), ] ) circ_dd = pm.run(circ) timeline_drawer(circ_dd) .. note:: You may need to call alignment pass before running dynamical decoupling to guarantee your circuit satisfies acquisition alignment constraints. """ def __init__( self, durations: InstructionDurations = None, dd_sequence: list[Gate] = None, qubits: list[int] | None = None, spacing: list[float] | None = None, skip_reset_qubits: bool = True, pulse_alignment: int = 1, extra_slack_distribution: str = "middle", target: Target = None, ): """Dynamical decoupling initializer. Args: durations: Durations of instructions to be used in scheduling. dd_sequence: Sequence of gates to apply in idle spots. qubits: Physical qubits on which to apply DD. If None, all qubits will undergo DD (when possible). spacing: A list of spacings between the DD gates. The available slack will be divided according to this. The list length must be one more than the length of dd_sequence, and the elements must sum to 1. If None, a balanced spacing will be used [d/2, d, d, ..., d, d, d/2]. skip_reset_qubits: If True, does not insert DD on idle periods that immediately follow initialized/reset qubits (as qubits in the ground state are less susceptile to decoherence). pulse_alignment: The hardware constraints for gate timing allocation. This is usually provided from ``backend.configuration().timing_constraints``. If provided, the delay length, i.e. ``spacing``, is implicitly adjusted to satisfy this constraint. extra_slack_distribution: The option to control the behavior of DD sequence generation. The duration of the DD sequence should be identical to an idle time in the scheduled quantum circuit, however, the delay in between gates comprising the sequence should be integer number in units of dt, and it might be further truncated when ``pulse_alignment`` is specified. This sometimes results in the duration of the created sequence being shorter than the idle time that you want to fill with the sequence, i.e. `extra slack`. This option takes following values. - "middle": Put the extra slack to the interval at the middle of the sequence. - "edges": Divide the extra slack as evenly as possible into intervals at beginning and end of the sequence. target: The :class:`~.Target` representing the target backend, if both ``durations`` and this are specified then this argument will take precedence and ``durations`` will be ignored. Raises: TranspilerError: When invalid DD sequence is specified. TranspilerError: When pulse gate with the duration which is non-multiple of the alignment constraint value is found. TypeError: If ``dd_sequence`` is not specified """ super().__init__(target=target) self._durations = durations if dd_sequence is None: raise TypeError("required argument 'dd_sequence' is not specified") self._dd_sequence = dd_sequence self._qubits = qubits self._skip_reset_qubits = skip_reset_qubits self._alignment = pulse_alignment self._spacing = spacing self._extra_slack_distribution = extra_slack_distribution self._no_dd_qubits: set[int] = set() self._dd_sequence_lengths: dict[Qubit, list[int]] = {} self._sequence_phase = 0 if target is not None: self._durations = target.durations() for gate in dd_sequence: if gate.name not in target.operation_names: raise TranspilerError( f"{gate.name} in dd_sequence is not supported in the target" ) def _pre_runhook(self, dag: DAGCircuit): super()._pre_runhook(dag) num_pulses = len(self._dd_sequence) # Check if physical circuit is given if len(dag.qregs) != 1 or dag.qregs.get("q", None) is None: raise TranspilerError("DD runs on physical circuits only.") # Set default spacing otherwise validate user input if self._spacing is None: mid = 1 / num_pulses end = mid / 2 self._spacing = [end] + [mid] * (num_pulses - 1) + [end] else: if sum(self._spacing) != 1 or any(a < 0 for a in self._spacing): raise TranspilerError( "The spacings must be given in terms of fractions " "of the slack period and sum to 1." ) # Check if DD sequence is identity if num_pulses != 1: if num_pulses % 2 != 0: raise TranspilerError("DD sequence must contain an even number of gates (or 1).") noop = np.eye(2) for gate in self._dd_sequence: noop = noop.dot(gate.to_matrix()) if not matrix_equal(noop, IGate().to_matrix(), ignore_phase=True): raise TranspilerError("The DD sequence does not make an identity operation.") self._sequence_phase = np.angle(noop[0][0]) # Compute no DD qubits on which any gate in dd_sequence is not supported in the target for qarg, _ in enumerate(dag.qubits): for gate in self._dd_sequence: if not self.__gate_supported(gate, qarg): self._no_dd_qubits.add(qarg) logger.debug( "No DD on qubit %d as gate %s is not supported on it", qarg, gate.name ) break # Precompute qubit-wise DD sequence length for performance for physical_index, qubit in enumerate(dag.qubits): if not self.__is_dd_qubit(physical_index): continue sequence_lengths = [] for gate in self._dd_sequence: try: # Check calibration. params = self._resolve_params(gate) gate_length = dag.calibrations[gate.name][((physical_index,), params)].duration if gate_length % self._alignment != 0: # This is necessary to implement lightweight scheduling logic for this pass. # Usually the pulse alignment constraint and pulse data chunk size take # the same value, however, we can intentionally violate this pattern # at the gate level. For example, we can create a schedule consisting of # a pi-pulse of 32 dt followed by a post buffer, i.e. delay, of 4 dt # on the device with 16 dt constraint. Note that the pi-pulse length # is multiple of 16 dt but the gate length of 36 is not multiple of it. # Such pulse gate should be excluded. raise TranspilerError( f"Pulse gate {gate.name} with length non-multiple of {self._alignment} " f"is not acceptable in {self.__class__.__name__} pass." ) except KeyError: gate_length = self._durations.get(gate, physical_index) sequence_lengths.append(gate_length) # Update gate duration. This is necessary for current timeline drawer, i.e. scheduled. gate.duration = gate_length self._dd_sequence_lengths[qubit] = sequence_lengths def __gate_supported(self, gate: Gate, qarg: int) -> bool: """A gate is supported on the qubit (qarg) or not.""" if self.target is None or self.target.instruction_supported(gate.name, qargs=(qarg,)): return True return False def __is_dd_qubit(self, qubit_index: int) -> bool: """DD can be inserted in the qubit or not.""" if (qubit_index in self._no_dd_qubits) or ( self._qubits and qubit_index not in self._qubits ): return False return True def _pad( self, dag: DAGCircuit, qubit: Qubit, t_start: int, t_end: int, next_node: DAGNode, prev_node: DAGNode, ): # This routine takes care of the pulse alignment constraint for the DD sequence. # Note that the alignment constraint acts on the t0 of the DAGOpNode. # Now this constrained scheduling problem is simplified to the problem of # finding a delay amount which is a multiple of the constraint value by assuming # that the duration of every DAGOpNode is also a multiple of the constraint value. # # For example, given the constraint value of 16 and XY4 with 160 dt gates. # Here we assume current interval is 992 dt. # # relative spacing := [0.125, 0.25, 0.25, 0.25, 0.125] # slack = 992 dt - 4 x 160 dt = 352 dt # # unconstraind sequence: 44dt-X1-88dt-Y2-88dt-X3-88dt-Y4-44dt # constraind sequence : 32dt-X1-80dt-Y2-80dt-X3-80dt-Y4-32dt + extra slack 48 dt # # Now we evenly split extra slack into start and end of the sequence. # The distributed slack should be multiple of 16. # Start = +16, End += 32 # # final sequence : 48dt-X1-80dt-Y2-80dt-X3-80dt-Y4-64dt / in total 992 dt # # Now we verify t0 of every node starts from multiple of 16 dt. # # X1: 48 dt (3 x 16 dt) # Y2: 48 dt + 160 dt + 80 dt = 288 dt (18 x 16 dt) # Y3: 288 dt + 160 dt + 80 dt = 528 dt (33 x 16 dt) # Y4: 368 dt + 160 dt + 80 dt = 768 dt (48 x 16 dt) # # As you can see, constraints on t0 are all satisfied without explicit scheduling. time_interval = t_end - t_start if time_interval % self._alignment != 0: raise TranspilerError( f"Time interval {time_interval} is not divisible by alignment {self._alignment} " f"between DAGNode {prev_node.name} on qargs {prev_node.qargs} and {next_node.name} " f"on qargs {next_node.qargs}." ) if not self.__is_dd_qubit(dag.qubits.index(qubit)): # Target physical qubit is not the target of this DD sequence. self._apply_scheduled_op(dag, t_start, Delay(time_interval, dag.unit), qubit) return if self._skip_reset_qubits and ( isinstance(prev_node, DAGInNode) or isinstance(prev_node.op, Reset) ): # Previous node is the start edge or reset, i.e. qubit is ground state. self._apply_scheduled_op(dag, t_start, Delay(time_interval, dag.unit), qubit) return slack = time_interval - np.sum(self._dd_sequence_lengths[qubit]) sequence_gphase = self._sequence_phase if slack <= 0: # Interval too short. self._apply_scheduled_op(dag, t_start, Delay(time_interval, dag.unit), qubit) return if len(self._dd_sequence) == 1: # Special case of using a single gate for DD u_inv = self._dd_sequence[0].inverse().to_matrix() theta, phi, lam, phase = OneQubitEulerDecomposer().angles_and_phase(u_inv) if isinstance(next_node, DAGOpNode) and isinstance(next_node.op, (UGate, U3Gate)): # Absorb the inverse into the successor (from left in circuit) theta_r, phi_r, lam_r = next_node.op.params next_node.op.params = Optimize1qGates.compose_u3( theta_r, phi_r, lam_r, theta, phi, lam ) sequence_gphase += phase elif isinstance(prev_node, DAGOpNode) and isinstance(prev_node.op, (UGate, U3Gate)): # Absorb the inverse into the predecessor (from right in circuit) theta_l, phi_l, lam_l = prev_node.op.params prev_node.op.params = Optimize1qGates.compose_u3( theta, phi, lam, theta_l, phi_l, lam_l ) sequence_gphase += phase else: # Don't do anything if there's no single-qubit gate to absorb the inverse self._apply_scheduled_op(dag, t_start, Delay(time_interval, dag.unit), qubit) return def _constrained_length(values): return self._alignment * np.floor(values / self._alignment) # (1) Compute DD intervals satisfying the constraint taus = _constrained_length(slack * np.asarray(self._spacing)) extra_slack = slack - np.sum(taus) # (2) Distribute extra slack if self._extra_slack_distribution == "middle": mid_ind = int((len(taus) - 1) / 2) to_middle = _constrained_length(extra_slack) taus[mid_ind] += to_middle if extra_slack - to_middle: # If to_middle is not a multiple value of the pulse alignment, # it is truncated to the nearlest multiple value and # the rest of slack is added to the end. taus[-1] += extra_slack - to_middle elif self._extra_slack_distribution == "edges": to_begin_edge = _constrained_length(extra_slack / 2) taus[0] += to_begin_edge taus[-1] += extra_slack - to_begin_edge else: raise TranspilerError( f"Option extra_slack_distribution = {self._extra_slack_distribution} is invalid." ) # (3) Construct DD sequence with delays num_elements = max(len(self._dd_sequence), len(taus)) idle_after = t_start for dd_ind in range(num_elements): if dd_ind < len(taus): tau = taus[dd_ind] if tau > 0: self._apply_scheduled_op(dag, idle_after, Delay(tau, dag.unit), qubit) idle_after += tau if dd_ind < len(self._dd_sequence): gate = self._dd_sequence[dd_ind] gate_length = self._dd_sequence_lengths[qubit][dd_ind] self._apply_scheduled_op(dag, idle_after, gate, qubit) idle_after += gate_length dag.global_phase = self._mod_2pi(dag.global_phase + sequence_gphase) @staticmethod def _resolve_params(gate: Gate) -> tuple: """Return gate params with any bound parameters replaced with floats""" params = [] for p in gate.params: if isinstance(p, ParameterExpression) and not p.parameters: params.append(float(p)) else: params.append(p) return tuple(params) @staticmethod def _mod_2pi(angle: float, atol: float = 0): """Wrap angle into interval [-π,π). If within atol of the endpoint, clamp to -π""" wrapped = (angle + np.pi) % (2 * np.pi) - np.pi if abs(wrapped - np.pi) < atol: wrapped = -np.pi return wrapped