Código fonte de qiskit.result.sampled_expval

# This code is part of Qiskit.
#
# (C) Copyright IBM 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=cyclic-import

"""Routines for computing expectation values from sampled distributions"""
import numpy as np

from qiskit._accelerate.sampled_exp_val import sampled_expval_float, sampled_expval_complex
from qiskit.exceptions import QiskitError
from .distributions import QuasiDistribution, ProbDistribution


# A list of valid diagonal operators
OPERS = {"Z", "I", "0", "1"}


[documentos]def sampled_expectation_value(dist, oper): """Computes expectation value from a sampled distribution Note that passing a raw dict requires bit-string keys. Parameters: dist (Counts or QuasiDistribution or ProbDistribution or dict): Input sampled distribution oper (str or Pauli or PauliOp or PauliSumOp or SparsePauliOp): The operator for the observable Returns: float: The expectation value Raises: QiskitError: if the input distribution or operator is an invalid type """ from .counts import Counts from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit.opflow import PauliOp, PauliSumOp # This should be removed when these return bit-string keys if isinstance(dist, (QuasiDistribution, ProbDistribution)): dist = dist.binary_probabilities() if not isinstance(dist, (Counts, dict)): raise QiskitError("Invalid input distribution type") if isinstance(oper, str): oper_strs = [oper.upper()] coeffs = np.asarray([1.0]) elif isinstance(oper, Pauli): oper_strs = [oper.to_label()] coeffs = np.asarray([1.0]) elif isinstance(oper, PauliOp): oper_strs = [oper.primitive.to_label()] coeffs = np.asarray([1.0]) elif isinstance(oper, PauliSumOp): spo = oper.primitive oper_strs = spo.paulis.to_labels() coeffs = np.asarray(spo.coeffs) * oper.coeff elif isinstance(oper, SparsePauliOp): oper_strs = oper.paulis.to_labels() coeffs = np.asarray(oper.coeffs) else: raise QiskitError("Invalid operator type") # Do some validation here bitstring_len = len(next(iter(dist))) if any(len(op) != bitstring_len for op in oper_strs): raise QiskitError( f"One or more operators not same length ({bitstring_len}) as input bitstrings" ) for op in oper_strs: if set(op).difference(OPERS): raise QiskitError(f"Input operator {op} is not diagonal") # Dispatch to Rust routines if coeffs.dtype == np.dtype(complex).type: return sampled_expval_complex(oper_strs, coeffs, dist) else: return sampled_expval_float(oper_strs, coeffs, dist)