# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Two-pulse single-qubit gate."""
import math
from cmath import exp
from typing import Optional, Union
import numpy
from qiskit.circuit.controlledgate import ControlledGate
from qiskit.circuit.gate import Gate
from qiskit.circuit.parameterexpression import ParameterValueType
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.circuit.exceptions import CircuitError
[documentos]class UGate(Gate):
r"""Generic single-qubit rotation gate with 3 Euler angles.
Can be applied to a :class:`~qiskit.circuit.QuantumCircuit`
with the :meth:`~qiskit.circuit.QuantumCircuit.u` method.
**Circuit symbol:**
.. parsed-literal::
ββββββββββββ
q_0: β€ U(Ο΄,Ο,Ξ») β
ββββββββββββ
**Matrix Representation:**
.. math::
\newcommand{\th}{\frac{\theta}{2}}
U(\theta, \phi, \lambda) =
\begin{pmatrix}
\cos\left(\th\right) & -e^{i\lambda}\sin\left(\th\right) \\
e^{i\phi}\sin\left(\th\right) & e^{i(\phi+\lambda)}\cos\left(\th\right)
\end{pmatrix}
.. note::
The matrix representation shown here is the same as in the `OpenQASM 3.0 specification
<https://openqasm.com/language/gates.html#built-in-gates>`_,
which differs from the `OpenQASM 2.0 specification
<https://doi.org/10.48550/arXiv.1707.03429>`_ by a global phase of
:math:`e^{i(\phi+\lambda)/2}`.
**Examples:**
.. math::
U\left(\theta, -\frac{\pi}{2}, \frac{\pi}{2}\right) = RX(\theta)
.. math::
U(\theta, 0, 0) = RY(\theta)
"""
def __init__(
self,
theta: ParameterValueType,
phi: ParameterValueType,
lam: ParameterValueType,
label: Optional[str] = None,
):
"""Create new U gate."""
super().__init__("u", 1, [theta, phi, lam], label=label)
[documentos] def inverse(self):
r"""Return inverted U gate.
:math:`U(\theta,\phi,\lambda)^{\dagger} =U(-\theta,-\lambda,-\phi)`)
"""
return UGate(-self.params[0], -self.params[2], -self.params[1])
[documentos] def control(
self,
num_ctrl_qubits: int = 1,
label: Optional[str] = None,
ctrl_state: Optional[Union[str, int]] = None,
):
"""Return a (multi-)controlled-U gate.
Args:
num_ctrl_qubits (int): number of control qubits.
label (str or None): An optional label for the gate [Default: None]
ctrl_state (int or str or None): control state expressed as integer,
string (e.g. '110'), or None. If None, use all 1s.
Returns:
ControlledGate: controlled version of this gate.
"""
if num_ctrl_qubits == 1:
gate = CUGate(
self.params[0],
self.params[1],
self.params[2],
0,
label=label,
ctrl_state=ctrl_state,
)
gate.base_gate.label = self.label
return gate
return super().control(num_ctrl_qubits=num_ctrl_qubits, label=label, ctrl_state=ctrl_state)
def __array__(self, dtype=complex):
"""Return a numpy.array for the U gate."""
theta, phi, lam = (float(param) for param in self.params)
cos = math.cos(theta / 2)
sin = math.sin(theta / 2)
return numpy.array(
[
[cos, -exp(1j * lam) * sin],
[exp(1j * phi) * sin, exp(1j * (phi + lam)) * cos],
],
dtype=dtype,
)
[documentos]class CUGate(ControlledGate):
r"""Controlled-U gate (4-parameter two-qubit gate).
This is a controlled version of the U gate (generic single qubit rotation),
including a possible global phase :math:`e^{i\gamma}` of the U gate.
Can be applied to a :class:`~qiskit.circuit.QuantumCircuit`
with the :meth:`~qiskit.circuit.QuantumCircuit.cu` method.
**Circuit symbol:**
.. parsed-literal::
q_0: βββββββ ββββββ
βββββββ΄βββββββ
q_1: β€ U(Ο΄,Ο,Ξ»,Ξ³) β
ββββββββββββββ
**Matrix representation:**
.. math::
\newcommand{\th}{\frac{\theta}{2}}
CU(\theta, \phi, \lambda, \gamma)\ q_0, q_1 =
I \otimes |0\rangle\langle 0| +
e^{i\gamma} U(\theta,\phi,\lambda) \otimes |1\rangle\langle 1| =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & e^{i\gamma}\cos(\th) & 0 & -e^{i(\gamma + \lambda)}\sin(\th) \\
0 & 0 & 1 & 0 \\
0 & e^{i(\gamma+\phi)}\sin(\th) & 0 & e^{i(\gamma+\phi+\lambda)}\cos(\th)
\end{pmatrix}
.. note::
In Qiskit's convention, higher qubit indices are more significant
(little endian convention). In many textbooks, controlled gates are
presented with the assumption of more significant qubits as control,
which in our case would be q_1. Thus a textbook matrix for this
gate will be:
.. parsed-literal::
ββββββββββββββ
q_0: β€ U(Ο΄,Ο,Ξ»,Ξ³) β
βββββββ¬βββββββ
q_1: βββββββ βββββββ
.. math::
CU(\theta, \phi, \lambda, \gamma)\ q_1, q_0 =
|0\rangle\langle 0| \otimes I +
e^{i\gamma}|1\rangle\langle 1| \otimes U(\theta,\phi,\lambda) =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & e^{i\gamma} \cos(\th) & -e^{i(\gamma + \lambda)}\sin(\th) \\
0 & 0 & e^{i(\gamma + \phi)}\sin(\th) & e^{i(\gamma + \phi+\lambda)}\cos(\th)
\end{pmatrix}
"""
def __init__(
self,
theta: ParameterValueType,
phi: ParameterValueType,
lam: ParameterValueType,
gamma: ParameterValueType,
label: Optional[str] = None,
ctrl_state: Optional[Union[str, int]] = None,
):
"""Create new CU gate."""
super().__init__(
"cu",
2,
[theta, phi, lam, gamma],
num_ctrl_qubits=1,
label=label,
ctrl_state=ctrl_state,
base_gate=UGate(theta, phi, lam),
)
def _define(self):
"""
gate cu(theta,phi,lambda,gamma) c, t
{ phase(gamma) c;
phase((lambda+phi)/2) c;
phase((lambda-phi)/2) t;
cx c,t;
u(-theta/2,0,-(phi+lambda)/2) t;
cx c,t;
u(theta/2,phi,0) t;
}
"""
# pylint: disable=cyclic-import
from qiskit.circuit.quantumcircuit import QuantumCircuit
# ββββββββ ββββββββββββββββ
# q_0: βββββ€ P(Ξ³) ββββββ€ P(Ξ»/2 + Ο/2) ββββ βββββββββββββββββββββββββββββ ββββββββββββββββ
# βββββ΄βββββββ΄βββββββββββββββββββββββ΄βββββββββββββββββββββββββββββ΄ββββββββββββββββ
# q_1: β€ P(Ξ»/2 - Ο/2) ββββββββββββββββββ€ X ββ€ U(-0/2,0,-Ξ»/2 - Ο/2) ββ€ X ββ€ U(0/2,Ο,0) β
# ββββββββββββββββ ββββββββββββββββββββββββββββββββββββββββββββββββ
q = QuantumRegister(2, "q")
qc = QuantumCircuit(q, name=self.name)
qc.p(self.params[3], 0)
qc.p((self.params[2] + self.params[1]) / 2, 0)
qc.p((self.params[2] - self.params[1]) / 2, 1)
qc.cx(0, 1)
qc.u(-self.params[0] / 2, 0, -(self.params[1] + self.params[2]) / 2, 1)
qc.cx(0, 1)
qc.u(self.params[0] / 2, self.params[1], 0, 1)
self.definition = qc
[documentos] def inverse(self):
r"""Return inverted CU gate.
:math:`CU(\theta,\phi,\lambda,\gamma)^{\dagger} = CU(-\theta,-\phi,-\lambda,-\gamma)`)
"""
return CUGate(
-self.params[0],
-self.params[2],
-self.params[1],
-self.params[3],
ctrl_state=self.ctrl_state,
)
def __array__(self, dtype=None):
"""Return a numpy.array for the CU gate."""
theta, phi, lam, gamma = (float(param) for param in self.params)
cos = numpy.cos(theta / 2)
sin = numpy.sin(theta / 2)
a = numpy.exp(1j * gamma) * cos
b = -numpy.exp(1j * (gamma + lam)) * sin
c = numpy.exp(1j * (gamma + phi)) * sin
d = numpy.exp(1j * (gamma + phi + lam)) * cos
if self.ctrl_state:
return numpy.array(
[[1, 0, 0, 0], [0, a, 0, b], [0, 0, 1, 0], [0, c, 0, d]], dtype=dtype
)
else:
return numpy.array(
[[a, 0, b, 0], [0, 1, 0, 0], [c, 0, d, 0], [0, 0, 0, 1]], dtype=dtype
)
@property
def params(self):
"""Get parameters from base_gate.
Returns:
list: List of gate parameters.
Raises:
CircuitError: Controlled gate does not define a base gate
"""
if self.base_gate:
# CU has one additional parameter to the U base gate
return self.base_gate.params + self._params
else:
raise CircuitError("Controlled gate does not define base gate for extracting params")
@params.setter
def params(self, parameters):
"""Set base gate parameters.
Args:
parameters (list): The list of parameters to set.
Raises:
CircuitError: If controlled gate does not define a base gate.
"""
# CU has one additional parameter to the U base gate
self._params = [parameters[-1]]
if self.base_gate:
self.base_gate.params = parameters[:-1]
else:
raise CircuitError("Controlled gate does not define base gate for extracting params")