Código fonte de qiskit.circuit.library.generalized_gates.linear_function

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Linear Function."""

from __future__ import annotations
import numpy as np
from qiskit.circuit.quantumcircuit import QuantumCircuit, Gate
from qiskit.circuit.exceptions import CircuitError
from qiskit.synthesis.linear import check_invertible_binary_matrix
from qiskit.circuit.library.generalized_gates.permutation import PermutationGate


[documentos]class LinearFunction(Gate): r"""A linear reversible circuit on n qubits. Internally, a linear function acting on n qubits is represented as a n x n matrix of 0s and 1s in numpy array format. A linear function can be synthesized into CX and SWAP gates using the Patel–Markov–Hayes algorithm, as implemented in :func:`~qiskit.transpiler.synthesis.cnot_synth` based on reference [1]. For efficiency, the internal n x n matrix is stored in the format expected by cnot_synth, which is the big-endian (and not the little-endian) bit-ordering convention. **Example:** the circuit .. parsed-literal:: q_0: ──■── ┌─┴─┐ q_1: ┤ X ├ └───┘ q_2: ───── is represented by a 3x3 linear matrix .. math:: \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} **References:** [1] Ketan N. Patel, Igor L. Markov, and John P. Hayes, Optimal synthesis of linear reversible circuits, Quantum Inf. Comput. 8(3) (2008). `Online at umich.edu. <https://web.eecs.umich.edu/~imarkov/pubs/jour/qic08-cnot.pdf>`_ """ def __init__(self, linear, validate_input=False): """Create a new linear function. Args: linear (list[list] or ndarray[bool] or QuantumCircuit or LinearFunction or PermutationGate or Clifford): data from which a linear function can be constructed. It can be either a nxn matrix (describing the linear transformation), a permutation (which is a special case of a linear function), another linear function, a clifford (when it corresponds to a linear function), or a quantum circuit composed of linear gates (CX and SWAP) and other objects described above, including nested subcircuits. validate_input: if True, performs more expensive input validation checks, such as checking that a given n x n matrix is invertible. Raises: CircuitError: if the input is invalid: either the input matrix is not square or not invertible, or the input quantum circuit contains non-linear objects (for example, a Hadamard gate, or a Clifford that does not correspond to a linear function). """ # pylint: disable=cyclic-import from qiskit.quantum_info import Clifford original_circuit = None if isinstance(linear, (list, np.ndarray)): # Normalize to numpy array (coercing entries to 0s and 1s) try: linear = np.array(linear, dtype=bool, copy=True) except ValueError: raise CircuitError( "A linear function must be represented by a square matrix." ) from None # Check that the matrix is square if len(linear.shape) != 2 or linear.shape[0] != linear.shape[1]: raise CircuitError("A linear function must be represented by a square matrix.") # Optionally, check that the matrix is invertible if validate_input: if not check_invertible_binary_matrix(linear): raise CircuitError( "A linear function must be represented by an invertible matrix." ) elif isinstance(linear, QuantumCircuit): # The following function will raise a CircuitError if there are nonlinear gates. original_circuit = linear linear = LinearFunction._circuit_to_mat(linear) elif isinstance(linear, LinearFunction): linear = linear.linear.copy() elif isinstance(linear, PermutationGate): linear = LinearFunction._permutation_to_mat(linear) elif isinstance(linear, Clifford): # The following function will raise a CircuitError if clifford does not correspond # to a linear function. linear = LinearFunction._clifford_to_mat(linear) # Note: if we wanted, we could also try to construct a linear function from a # general operator, by first attempting to convert it to clifford, and then to # a linear function. else: raise CircuitError("A linear function cannot be successfully constructed.") super().__init__( name="linear_function", num_qubits=len(linear), params=[linear, original_circuit] ) @staticmethod def _circuit_to_mat(qc: QuantumCircuit): """This creates a nxn matrix corresponding to the given quantum circuit.""" nq = qc.num_qubits mat = np.eye(nq, nq, dtype=bool) for instruction in qc.data: if instruction.operation.name in ("barrier", "delay"): # can be ignored continue if instruction.operation.name == "cx": # implemented directly cb = qc.find_bit(instruction.qubits[0]).index tb = qc.find_bit(instruction.qubits[1]).index mat[tb, :] = (mat[tb, :]) ^ (mat[cb, :]) continue if instruction.operation.name == "swap": # implemented directly cb = qc.find_bit(instruction.qubits[0]).index tb = qc.find_bit(instruction.qubits[1]).index mat[[cb, tb]] = mat[[tb, cb]] continue # In all other cases, we construct the linear function for the operation. # and compose (multiply) linear matrices. if getattr(instruction.operation, "definition", None) is not None: other = LinearFunction(instruction.operation.definition) else: other = LinearFunction(instruction.operation) positions = [qc.find_bit(q).index for q in instruction.qubits] other = other.extend_with_identity(len(mat), positions) mat = np.dot(other.linear.astype(int), mat.astype(int)) % 2 mat = mat.astype(bool) return mat @staticmethod def _clifford_to_mat(cliff): """This creates a nxn matrix corresponding to the given Clifford, when Clifford can be converted to a linear function. This is possible when the clifford has tableau of the form [[A, B], [C, D]], with B = C = 0 and D = A^{-1}^t, and zero phase vector. In this case, the required matrix is A^t. Raises an error otherwise. """ # Note: since cliff is a valid Clifford, then the condition D = A^{-1}^t # holds automatically once B = C = 0. if cliff.phase.any() or cliff.destab_z.any() or cliff.stab_x.any(): raise CircuitError("The given clifford does not correspond to a linear function.") return np.transpose(cliff.destab_x) @staticmethod def _permutation_to_mat(perm): """This creates a nxn matrix from a given permutation gate.""" nq = len(perm.pattern) mat = np.zeros((nq, nq), dtype=bool) for i, j in enumerate(perm.pattern): mat[i, j] = True return mat def __eq__(self, other): """Check if two linear functions represent the same matrix.""" if not isinstance(other, LinearFunction): return False return (self.linear == other.linear).all()
[documentos] def validate_parameter(self, parameter): """Parameter validation""" return parameter
def _define(self): """Populates self.definition with a decomposition of this gate.""" self.definition = self.synthesize()
[documentos] def synthesize(self): """Synthesizes the linear function into a quantum circuit. Returns: QuantumCircuit: A circuit implementing the evolution. """ from qiskit.synthesis.linear import synth_cnot_count_full_pmh return synth_cnot_count_full_pmh(self.linear)
@property def linear(self): """Returns the n x n matrix representing this linear function.""" return self.params[0] @property def original_circuit(self): """Returns the original circuit used to construct this linear function (including None, when the linear function is not constructed from a circuit). """ return self.params[1]
[documentos] def is_permutation(self) -> bool: """Returns whether this linear function is a permutation, that is whether every row and every column of the n x n matrix has exactly one 1. """ linear = self.linear perm = np.all(np.sum(linear, axis=0) == 1) and np.all(np.sum(linear, axis=1) == 1) return perm
[documentos] def permutation_pattern(self): """This method first checks if a linear function is a permutation and raises a `qiskit.circuit.exceptions.CircuitError` if not. In the case that this linear function is a permutation, returns the permutation pattern. """ if not self.is_permutation(): raise CircuitError("The linear function is not a permutation") linear = self.linear locs = np.where(linear == 1) return locs[1]
[documentos] def extend_with_identity(self, num_qubits: int, positions: list[int]) -> LinearFunction: """Extend linear function to a linear function over nq qubits, with identities on other subsystems. Args: num_qubits: number of qubits of the extended function. positions: describes the positions of original qubits in the extended function's qubits. Returns: LinearFunction: extended linear function. """ extended_mat = np.eye(num_qubits, dtype=bool) for i, pos in enumerate(positions): extended_mat[positions, pos] = self.linear[:, i] return LinearFunction(extended_mat)
[documentos] def mat_str(self): """Return string representation of the linear function viewed as a matrix with 0/1 entries. """ return str(self.linear.astype(int))
[documentos] def function_str(self): """Return string representation of the linear function viewed as a linear transformation. """ out = "(" mat = self.linear for row in range(self.num_qubits): first_entry = True for col in range(self.num_qubits): if mat[row, col]: if not first_entry: out += " + " out += "x_" + str(col) first_entry = False if row != self.num_qubits - 1: out += ", " out += ")\n" return out