Código fonte de qiskit.circuit.library.arithmetic.piecewise_linear_pauli_rotations

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.


"""Piecewise-linearly-controlled rotation."""

from __future__ import annotations
import numpy as np

from qiskit.circuit import QuantumRegister, AncillaRegister, QuantumCircuit
from qiskit.circuit.exceptions import CircuitError

from .functional_pauli_rotations import FunctionalPauliRotations
from .linear_pauli_rotations import LinearPauliRotations
from .integer_comparator import IntegerComparator


[documentos]class PiecewiseLinearPauliRotations(FunctionalPauliRotations): r"""Piecewise-linearly-controlled Pauli rotations. For a piecewise linear (not necessarily continuous) function :math:`f(x)`, which is defined through breakpoints, slopes and offsets as follows. Suppose the breakpoints :math:`(x_0, ..., x_J)` are a subset of :math:`[0, 2^n-1]`, where :math:`n` is the number of state qubits. Further on, denote the corresponding slopes and offsets by :math:`a_j` and :math:`b_j` respectively. Then f(x) is defined as: .. math:: f(x) = \begin{cases} 0, x < x_0 \\ a_j (x - x_j) + b_j, x_j \leq x < x_{j+1} \end{cases} where we implicitly assume :math:`x_{J+1} = 2^n`. """ def __init__( self, num_state_qubits: int | None = None, breakpoints: list[int] | None = None, slopes: list[float] | np.ndarray | None = None, offsets: list[float] | np.ndarray | None = None, basis: str = "Y", name: str = "pw_lin", ) -> None: """Construct piecewise-linearly-controlled Pauli rotations. Args: num_state_qubits: The number of qubits representing the state. breakpoints: The breakpoints to define the piecewise-linear function. Defaults to ``[0]``. slopes: The slopes for different segments of the piecewise-linear function. Defaults to ``[1]``. offsets: The offsets for different segments of the piecewise-linear function. Defaults to ``[0]``. basis: The type of Pauli rotation (``'X'``, ``'Y'``, ``'Z'``). name: The name of the circuit. """ # store parameters self._breakpoints = breakpoints if breakpoints is not None else [0] self._slopes = slopes if slopes is not None else [1] self._offsets = offsets if offsets is not None else [0] super().__init__(num_state_qubits=num_state_qubits, basis=basis, name=name) @property def breakpoints(self) -> list[int]: """The breakpoints of the piecewise linear function. The function is linear in the intervals ``[point_i, point_{i+1}]`` where the last point implicitly is ``2**(num_state_qubits + 1)``. """ return self._breakpoints @breakpoints.setter def breakpoints(self, breakpoints: list[int]) -> None: """Set the breakpoints. Args: breakpoints: The new breakpoints. """ self._invalidate() self._breakpoints = breakpoints if self.num_state_qubits and breakpoints: self._reset_registers(self.num_state_qubits) @property def slopes(self) -> list[float] | np.ndarray: """The breakpoints of the piecewise linear function. The function is linear in the intervals ``[point_i, point_{i+1}]`` where the last point implicitly is ``2**(num_state_qubits + 1)``. """ return self._slopes @slopes.setter def slopes(self, slopes: list[float]) -> None: """Set the slopes. Args: slopes: The new slopes. """ self._invalidate() self._slopes = slopes @property def offsets(self) -> list[float] | np.ndarray: """The breakpoints of the piecewise linear function. The function is linear in the intervals ``[point_i, point_{i+1}]`` where the last point implicitly is ``2**(num_state_qubits + 1)``. """ return self._offsets @offsets.setter def offsets(self, offsets: list[float]) -> None: """Set the offsets. Args: offsets: The new offsets. """ self._invalidate() self._offsets = offsets @property def mapped_slopes(self) -> np.ndarray: """The slopes mapped to the internal representation. Returns: The mapped slopes. """ mapped_slopes = np.zeros_like(self.slopes) for i, slope in enumerate(self.slopes): mapped_slopes[i] = slope - sum(mapped_slopes[:i]) return mapped_slopes @property def mapped_offsets(self) -> np.ndarray: """The offsets mapped to the internal representation. Returns: The mapped offsets. """ mapped_offsets = np.zeros_like(self.offsets) for i, (offset, slope, point) in enumerate( zip(self.offsets, self.slopes, self.breakpoints) ): mapped_offsets[i] = offset - slope * point - sum(mapped_offsets[:i]) return mapped_offsets @property def contains_zero_breakpoint(self) -> bool | np.bool_: """Whether 0 is the first breakpoint. Returns: True, if 0 is the first breakpoint, otherwise False. """ return np.isclose(0, self.breakpoints[0])
[documentos] def evaluate(self, x: float) -> float: """Classically evaluate the piecewise linear rotation. Args: x: Value to be evaluated at. Returns: Value of piecewise linear function at x. """ y = (x >= self.breakpoints[0]) * (x * self.mapped_slopes[0] + self.mapped_offsets[0]) for i in range(1, len(self.breakpoints)): y = y + (x >= self.breakpoints[i]) * ( x * self.mapped_slopes[i] + self.mapped_offsets[i] ) return y
def _check_configuration(self, raise_on_failure: bool = True) -> bool: """Check if the current configuration is valid.""" valid = True if self.num_state_qubits is None: valid = False if raise_on_failure: raise AttributeError("The number of qubits has not been set.") if self.num_qubits < self.num_state_qubits + 1: valid = False if raise_on_failure: raise CircuitError( "Not enough qubits in the circuit, need at least " "{}.".format(self.num_state_qubits + 1) ) if len(self.breakpoints) != len(self.slopes) or len(self.breakpoints) != len(self.offsets): valid = False if raise_on_failure: raise ValueError("Mismatching sizes of breakpoints, slopes and offsets.") return valid def _reset_registers(self, num_state_qubits: int | None) -> None: """Reset the registers.""" self.qregs = [] if num_state_qubits is not None: qr_state = QuantumRegister(num_state_qubits) qr_target = QuantumRegister(1) self.qregs = [qr_state, qr_target] # add ancillas if required if len(self.breakpoints) > 1: num_ancillas = num_state_qubits qr_ancilla = AncillaRegister(num_ancillas) self.add_register(qr_ancilla) def _build(self): """If not already built, build the circuit.""" if self._is_built: return super()._build() circuit = QuantumCircuit(*self.qregs, name=self.name) qr_state = circuit.qubits[: self.num_state_qubits] qr_target = [circuit.qubits[self.num_state_qubits]] qr_ancilla = circuit.ancillas # apply comparators and controlled linear rotations for i, point in enumerate(self.breakpoints): if i == 0 and self.contains_zero_breakpoint: # apply rotation lin_r = LinearPauliRotations( num_state_qubits=self.num_state_qubits, slope=self.mapped_slopes[i], offset=self.mapped_offsets[i], basis=self.basis, ) circuit.append(lin_r.to_gate(), qr_state[:] + qr_target) else: qr_compare = [qr_ancilla[0]] qr_helper = qr_ancilla[1:] # apply Comparator comp = IntegerComparator(num_state_qubits=self.num_state_qubits, value=point) qr = qr_state[:] + qr_compare[:] # add ancilla as compare qubit circuit.append(comp.to_gate(), qr[:] + qr_helper[: comp.num_ancillas]) # apply controlled rotation lin_r = LinearPauliRotations( num_state_qubits=self.num_state_qubits, slope=self.mapped_slopes[i], offset=self.mapped_offsets[i], basis=self.basis, ) circuit.append(lin_r.to_gate().control(), qr_compare[:] + qr_state[:] + qr_target) # uncompute comparator circuit.append(comp.to_gate().inverse(), qr[:] + qr_helper[: comp.num_ancillas]) self.append(circuit.to_gate(), self.qubits)