CΓ³digo fonte de qiskit.circuit.library.arithmetic.multipliers.rg_qft_multiplier

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Compute the product of two qubit registers using QFT."""

from typing import Optional
import numpy as np

from qiskit.circuit import QuantumRegister, QuantumCircuit
from qiskit.circuit.library.standard_gates import PhaseGate
from qiskit.circuit.library.basis_change import QFT

from .multiplier import Multiplier


[documentos]class RGQFTMultiplier(Multiplier): r"""A QFT multiplication circuit to store product of two input registers out-of-place. Multiplication in this circuit is implemented using the procedure of Fig. 3 in [1], where weighted sum rotations are implemented as given in Fig. 5 in [1]. QFT is used on the output register and is followed by rotations controlled by input registers. The rotations transform the state into the product of two input registers in QFT base, which is reverted from QFT base using inverse QFT. As an example, a circuit that performs a modular QFT multiplication on two 2-qubit sized input registers with an output register of 2 qubits, is as follows: .. parsed-literal:: a_0: ────────────────────────────────────────■───────■──────■──────■──────────────── β”‚ β”‚ β”‚ β”‚ a_1: ─────────■───────■───────■───────■──────┼───────┼──────┼──────┼──────────────── β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ b_0: ─────────┼───────┼───────■───────■──────┼───────┼──────■──────■──────────────── β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ b_1: ─────────■───────■───────┼───────┼──────■───────■──────┼──────┼──────────────── β”Œβ”€β”€β”€β”€β”€β”€β” β”‚P(4Ο€) β”‚ β”‚P(2Ο€) β”‚ β”‚P(2Ο€) β”‚ β”‚P(Ο€) β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β” out_0: ─0 β”œβ”€β– β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β– β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β– β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β– β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€0 β”œ β”‚ qft β”‚ β”‚P(2Ο€) β”‚P(Ο€) β”‚P(Ο€) β”‚P(Ο€/2) β”‚ iqft β”‚ out_1: ─1 β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β– β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β– β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β– β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β– β”€β”€β”€β”€β”€β”€β”€β”€1 β”œ β””β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”˜ **References:** [1] Ruiz-Perez et al., Quantum arithmetic with the Quantum Fourier Transform, 2017. `arXiv:1411.5949 <https://arxiv.org/pdf/1411.5949.pdf>`_ """ def __init__( self, num_state_qubits: int, num_result_qubits: Optional[int] = None, name: str = "RGQFTMultiplier", ) -> None: r""" Args: num_state_qubits: The number of qubits in either input register for state :math:`|a\rangle` or :math:`|b\rangle`. The two input registers must have the same number of qubits. num_result_qubits: The number of result qubits to limit the output to. If number of result qubits is :math:`n`, multiplication modulo :math:`2^n` is performed to limit the output to the specified number of qubits. Default value is ``2 * num_state_qubits`` to represent any possible result from the multiplication of the two inputs. name: The name of the circuit object. """ super().__init__(num_state_qubits, num_result_qubits, name=name) # define the registers qr_a = QuantumRegister(num_state_qubits, name="a") qr_b = QuantumRegister(num_state_qubits, name="b") qr_out = QuantumRegister(self.num_result_qubits, name="out") self.add_register(qr_a, qr_b, qr_out) # build multiplication circuit circuit = QuantumCircuit(*self.qregs, name=name) circuit.append(QFT(self.num_result_qubits, do_swaps=False).to_gate(), qr_out[:]) for j in range(1, num_state_qubits + 1): for i in range(1, num_state_qubits + 1): for k in range(1, self.num_result_qubits + 1): lam = (2 * np.pi) / (2 ** (i + j + k - 2 * num_state_qubits)) circuit.append( PhaseGate(lam).control(2), [qr_a[num_state_qubits - j], qr_b[num_state_qubits - i], qr_out[k - 1]], ) circuit.append(QFT(self.num_result_qubits, do_swaps=False).inverse().to_gate(), qr_out[:]) self.append(circuit.to_gate(), self.qubits)