qiskit.quantum_info.operators.symplectic.clifford의 소스 코드

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017--2023
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Clifford operator class.
"""
from __future__ import annotations

import functools
import itertools
import re
from typing import Literal

import numpy as np

from qiskit.circuit import Instruction, QuantumCircuit
from qiskit.circuit.library.standard_gates import HGate, IGate, SGate, XGate, YGate, ZGate
from qiskit.circuit.operation import Operation
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.base_operator import BaseOperator
from qiskit.quantum_info.operators.mixins import AdjointMixin, generate_apidocs
from qiskit.quantum_info.operators.operator import Operator
from qiskit.quantum_info.operators.scalar_op import ScalarOp
from qiskit.quantum_info.operators.symplectic.base_pauli import _count_y
from qiskit.utils.deprecation import deprecate_func

from .base_pauli import BasePauli
from .clifford_circuits import _append_circuit, _append_operation
from .stabilizer_table import StabilizerTable


[문서]class Clifford(BaseOperator, AdjointMixin, Operation): """An N-qubit unitary operator from the Clifford group. **Representation** An *N*-qubit Clifford operator is stored as a length *2N × (2N+1)* boolean tableau using the convention from reference [1]. * Rows 0 to *N-1* are the *destabilizer* group generators * Rows *N* to *2N-1* are the *stabilizer* group generators. The internal boolean tableau for the Clifford can be accessed using the :attr:`tableau` attribute. The destabilizer or stabilizer rows can each be accessed as a length-N Stabilizer table using :attr:`destab` and :attr:`stab` attributes. A more easily human readable representation of the Clifford operator can be obtained by calling the :meth:`to_dict` method. This representation is also used if a Clifford object is printed as in the following example .. code-block:: from qiskit import QuantumCircuit from qiskit.quantum_info import Clifford # Bell state generation circuit qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) cliff = Clifford(qc) # Print the Clifford print(cliff) # Print the Clifford destabilizer rows print(cliff.to_labels(mode="D")) # Print the Clifford stabilizer rows print(cliff.to_labels(mode="S")) .. parsed-literal:: Clifford: Stabilizer = ['+XX', '+ZZ'], Destabilizer = ['+IZ', '+XI'] ['+IZ', '+XI'] ['+XX', '+ZZ'] **Circuit Conversion** Clifford operators can be initialized from circuits containing *only* the following Clifford gates: :class:`~qiskit.circuit.library.IGate`, :class:`~qiskit.circuit.library.XGate`, :class:`~qiskit.circuit.library.YGate`, :class:`~qiskit.circuit.library.ZGate`, :class:`~qiskit.circuit.library.HGate`, :class:`~qiskit.circuit.library.SGate`, :class:`~qiskit.circuit.library.SdgGate`, :class:`~qiskit.circuit.library.SXGate`, :class:`~qiskit.circuit.library.SXdgGate`, :class:`~qiskit.circuit.library.CXGate`, :class:`~qiskit.circuit.library.CZGate`, :class:`~qiskit.circuit.library.CYGate`, :class:`~qiskit.circuit.library.DXGate`, :class:`~qiskit.circuit.library.SwapGate`, :class:`~qiskit.circuit.library.iSwapGate`, :class:`~qiskit.circuit.library.ECRGate`. They can be converted back into a :class:`~qiskit.circuit.QuantumCircuit`, or :class:`~qiskit.circuit.Gate` object using the :meth:`~Clifford.to_circuit` or :meth:`~Clifford.to_instruction` methods respectively. Note that this decomposition is not necessarily optimal in terms of number of gates. .. note:: A minimally generating set of gates for Clifford circuits is the :class:`~qiskit.circuit.library.HGate` and :class:`~qiskit.circuit.library.SGate` gate and *either* the :class:`~qiskit.circuit.library.CXGate` or :class:`~qiskit.circuit.library.CZGate` two-qubit gate. Clifford operators can also be converted to :class:`~qiskit.quantum_info.Operator` objects using the :meth:`to_operator` method. This is done via decomposing to a circuit, and then simulating the circuit as a unitary operator. References: 1. S. Aaronson, D. Gottesman, *Improved Simulation of Stabilizer Circuits*, Phys. Rev. A 70, 052328 (2004). `arXiv:quant-ph/0406196 <https://arxiv.org/abs/quant-ph/0406196>`_ """ _COMPOSE_PHASE_LOOKUP = None _COMPOSE_1Q_LOOKUP = None def __array__(self, dtype=None): if dtype: return np.asarray(self.to_matrix(), dtype=dtype) return self.to_matrix() def __init__(self, data, validate=True, copy=True): """Initialize an operator object.""" # Initialize from another Clifford if isinstance(data, Clifford): num_qubits = data.num_qubits self.tableau = data.tableau.copy() if copy else data.tableau # Initialize from ScalarOp as N-qubit identity discarding any global phase elif isinstance(data, ScalarOp): if not data.num_qubits or not data.is_unitary(): raise QiskitError("Can only initialize from N-qubit identity ScalarOp.") num_qubits = data.num_qubits self.tableau = np.fromfunction( lambda i, j: i == j, (2 * num_qubits, 2 * num_qubits + 1) ).astype(bool) # Initialize from a QuantumCircuit or Instruction object elif isinstance(data, (QuantumCircuit, Instruction)): num_qubits = data.num_qubits self.tableau = Clifford.from_circuit(data).tableau # DEPRECATED: data is StabilizerTable elif isinstance(data, StabilizerTable): self.tableau = self._stack_table_phase(data.array, data.phase) num_qubits = data.num_qubits # Initialize StabilizerTable directly from the data else: if isinstance(data, (list, np.ndarray)) and np.asarray(data, dtype=bool).ndim == 2: data = np.array(data, dtype=bool, copy=copy) if data.shape[0] == data.shape[1]: self.tableau = self._stack_table_phase( data, np.zeros(data.shape[0], dtype=bool) ) num_qubits = data.shape[0] // 2 elif data.shape[0] + 1 == data.shape[1]: self.tableau = data num_qubits = data.shape[0] // 2 else: raise QiskitError("") else: n_paulis = len(data) symp = self._from_label(data[0]) num_qubits = len(symp) // 2 tableau = np.zeros((n_paulis, len(symp)), dtype=bool) tableau[0] = symp for i in range(1, n_paulis): tableau[i] = self._from_label(data[i]) self.tableau = tableau # Validate table is a symplectic matrix if validate and not Clifford._is_symplectic(self.symplectic_matrix): raise QiskitError( "Invalid Clifford. Input StabilizerTable is not a valid symplectic matrix." ) # Initialize BaseOperator super().__init__(num_qubits=num_qubits) @property def name(self): """Unique string identifier for operation type.""" return "clifford" @property def num_clbits(self): """Number of classical bits.""" return 0 def __repr__(self): return f"Clifford({repr(self.tableau)})" def __str__(self): return ( f'Clifford: Stabilizer = {self.to_labels(mode="S")}, ' f'Destabilizer = {self.to_labels(mode="D")}' ) def __eq__(self, other): """Check if two Clifford tables are equal""" return super().__eq__(other) and (self.tableau == other.tableau).all()
[문서] def copy(self): return type(self)(self, validate=False, copy=True)
# --------------------------------------------------------------------- # Attributes # --------------------------------------------------------------------- # pylint: disable=bad-docstring-quotes @deprecate_func( since="0.24.0", additional_msg="Instead, index or iterate through the Clifford.tableau attribute.", ) def __getitem__(self, key): """Return a stabilizer Pauli row""" return self.table.__getitem__(key) @deprecate_func(since="0.24.0", additional_msg="Use Clifford.tableau property instead.") def __setitem__(self, key, value): """Set a stabilizer Pauli row""" self.tableau.__setitem__(key, self._stack_table_phase(value.array, value.phase)) @property @deprecate_func( since="0.24.0", additional_msg="Use Clifford.stab and Clifford.destab properties instead.", is_property=True, ) def table(self): """Return StabilizerTable""" return StabilizerTable(self.symplectic_matrix, phase=self.phase) @table.setter @deprecate_func( since="0.24.0", additional_msg="Use Clifford.stab and Clifford.destab properties instead.", is_property=True, ) def table(self, value): """Set the stabilizer table""" # Note this setter cannot change the size of the Clifford # It can only replace the contents of the StabilizerTable with # another StabilizerTable of the same size. if not isinstance(value, StabilizerTable): value = StabilizerTable(value) self.symplectic_matrix = value._table._array self.phase = value._table._phase @property @deprecate_func( since="0.24.0", additional_msg="Use Clifford.stab properties instead.", is_property=True, ) def stabilizer(self): """Return the stabilizer block of the StabilizerTable.""" array = self.tableau[self.num_qubits : 2 * self.num_qubits, :-1] phase = self.tableau[self.num_qubits : 2 * self.num_qubits, -1].reshape(self.num_qubits) return StabilizerTable(array, phase) @stabilizer.setter @deprecate_func( since="0.24.0", additional_msg="Use Clifford.stab properties instead.", is_property=True, ) def stabilizer(self, value): """Set the value of stabilizer block of the StabilizerTable""" if not isinstance(value, StabilizerTable): value = StabilizerTable(value) self.tableau[self.num_qubits : 2 * self.num_qubits, :-1] = value.array @property @deprecate_func( since="0.24.0", additional_msg="Use Clifford.destab properties instead.", is_property=True, ) def destabilizer(self): """Return the destabilizer block of the StabilizerTable.""" array = self.tableau[0 : self.num_qubits, :-1] phase = self.tableau[0 : self.num_qubits, -1].reshape(self.num_qubits) return StabilizerTable(array, phase) @destabilizer.setter @deprecate_func( since="0.24.0", additional_msg="Use Clifford.destab properties instead.", is_property=True, ) def destabilizer(self, value): """Set the value of destabilizer block of the StabilizerTable""" if not isinstance(value, StabilizerTable): value = StabilizerTable(value) self.tableau[: self.num_qubits, :-1] = value.array @property def symplectic_matrix(self): """Return boolean symplectic matrix.""" return self.tableau[:, :-1] @symplectic_matrix.setter def symplectic_matrix(self, value): self.tableau[:, :-1] = value @property def phase(self): """Return phase with boolean representation.""" return self.tableau[:, -1] @phase.setter def phase(self, value): self.tableau[:, -1] = value @property def x(self): """The x array for the symplectic representation.""" return self.tableau[:, 0 : self.num_qubits] @x.setter def x(self, value): self.tableau[:, 0 : self.num_qubits] = value @property def z(self): """The z array for the symplectic representation.""" return self.tableau[:, self.num_qubits : 2 * self.num_qubits] @z.setter def z(self, value): self.tableau[:, self.num_qubits : 2 * self.num_qubits] = value @property def destab(self): """The destabilizer array for the symplectic representation.""" return self.tableau[: self.num_qubits, :] @destab.setter def destab(self, value): self.tableau[: self.num_qubits, :] = value @property def destab_x(self): """The destabilizer x array for the symplectic representation.""" return self.tableau[: self.num_qubits, : self.num_qubits] @destab_x.setter def destab_x(self, value): self.tableau[: self.num_qubits, : self.num_qubits] = value @property def destab_z(self): """The destabilizer z array for the symplectic representation.""" return self.tableau[: self.num_qubits, self.num_qubits : 2 * self.num_qubits] @destab_z.setter def destab_z(self, value): self.tableau[: self.num_qubits, self.num_qubits : 2 * self.num_qubits] = value @property def destab_phase(self): """Return phase of destabilizer with boolean representation.""" return self.tableau[: self.num_qubits, -1] @destab_phase.setter def destab_phase(self, value): self.tableau[: self.num_qubits, -1] = value @property def stab(self): """The stabilizer array for the symplectic representation.""" return self.tableau[self.num_qubits :, :] @stab.setter def stab(self, value): self.tableau[self.num_qubits :, :] = value @property def stab_x(self): """The stabilizer x array for the symplectic representation.""" return self.tableau[self.num_qubits :, : self.num_qubits] @stab_x.setter def stab_x(self, value): self.tableau[self.num_qubits :, : self.num_qubits] = value @property def stab_z(self): """The stabilizer array for the symplectic representation.""" return self.tableau[self.num_qubits :, self.num_qubits : 2 * self.num_qubits] @stab_z.setter def stab_z(self, value): self.tableau[self.num_qubits :, self.num_qubits : 2 * self.num_qubits] = value @property def stab_phase(self): """Return phase of stabilizer with boolean representation.""" return self.tableau[self.num_qubits :, -1] @stab_phase.setter def stab_phase(self, value): self.tableau[self.num_qubits :, -1] = value # --------------------------------------------------------------------- # Utility Operator methods # ---------------------------------------------------------------------
[문서] def is_unitary(self): """Return True if the Clifford table is valid.""" # A valid Clifford is always unitary, so this function is really # checking that the underlying Stabilizer table array is a valid # Clifford array. return Clifford._is_symplectic(self.symplectic_matrix)
# --------------------------------------------------------------------- # BaseOperator Abstract Methods # ---------------------------------------------------------------------
[문서] def conjugate(self): return Clifford._conjugate_transpose(self, "C")
[문서] def adjoint(self): return Clifford._conjugate_transpose(self, "A")
[문서] def transpose(self): return Clifford._conjugate_transpose(self, "T")
[문서] def tensor(self, other: Clifford) -> Clifford: if not isinstance(other, Clifford): other = Clifford(other) return self._tensor(self, other)
[문서] def expand(self, other: Clifford) -> Clifford: if not isinstance(other, Clifford): other = Clifford(other) return self._tensor(other, self)
@classmethod def _tensor(cls, a, b): n = a.num_qubits + b.num_qubits tableau = np.zeros((2 * n, 2 * n + 1), dtype=bool) clifford = cls(tableau, validate=False) clifford.destab_x[: b.num_qubits, : b.num_qubits] = b.destab_x clifford.destab_x[b.num_qubits :, b.num_qubits :] = a.destab_x clifford.destab_z[: b.num_qubits, : b.num_qubits] = b.destab_z clifford.destab_z[b.num_qubits :, b.num_qubits :] = a.destab_z clifford.stab_x[: b.num_qubits, : b.num_qubits] = b.stab_x clifford.stab_x[b.num_qubits :, b.num_qubits :] = a.stab_x clifford.stab_z[: b.num_qubits, : b.num_qubits] = b.stab_z clifford.stab_z[b.num_qubits :, b.num_qubits :] = a.stab_z clifford.phase[: b.num_qubits] = b.destab_phase clifford.phase[b.num_qubits : n] = a.destab_phase clifford.phase[n : n + b.num_qubits] = b.stab_phase clifford.phase[n + b.num_qubits :] = a.stab_phase return clifford
[문서] def compose( self, other: Clifford | QuantumCircuit | Instruction, qargs: list | None = None, front: bool = False, ) -> Clifford: if qargs is None: qargs = getattr(other, "qargs", None) # If other is a QuantumCircuit we can more efficiently compose # using the _append_circuit method to update each gate recursively # to the current Clifford, rather than converting to a Clifford first # and then doing the composition of tables. if not front: if isinstance(other, QuantumCircuit): return _append_circuit(self.copy(), other, qargs=qargs) if isinstance(other, Instruction): return _append_operation(self.copy(), other, qargs=qargs) if not isinstance(other, Clifford): # Not copying is safe since we're going to drop our only reference to `other` at the end # of the function. other = Clifford(other, copy=False) # Validate compose dimensions self._op_shape.compose(other._op_shape, qargs, front) # Pad other with identities if composing on subsystem other = self._pad_with_identity(other, qargs) left, right = (self, other) if front else (other, self) if self.num_qubits == 1: return self._compose_1q(left, right) return self._compose_general(left, right)
@classmethod def _compose_general(cls, first, second): # Correcting for phase due to Pauli multiplication. Start with factors of -i from XZ = -iY # on individual qubits, and then handle multiplication between each qubitwise pair. ifacts = np.sum(second.x & second.z, axis=1, dtype=int) x1, z1 = first.x.astype(np.uint8), first.z.astype(np.uint8) lookup = cls._compose_lookup() # The loop is over 2*n_qubits entries, and the entire loop is cubic in the number of qubits. for k, row2 in enumerate(second.symplectic_matrix): x1_select = x1[row2] z1_select = z1[row2] x1_accum = np.logical_xor.accumulate(x1_select, axis=0).astype(np.uint8) z1_accum = np.logical_xor.accumulate(z1_select, axis=0).astype(np.uint8) indexer = (x1_select[1:], z1_select[1:], x1_accum[:-1], z1_accum[:-1]) ifacts[k] += np.sum(lookup[indexer]) p = np.mod(ifacts, 4) // 2 phase = ( (np.matmul(second.symplectic_matrix, first.phase, dtype=int) + second.phase + p) % 2 ).astype(bool) data = cls._stack_table_phase( (np.matmul(second.symplectic_matrix, first.symplectic_matrix, dtype=int) % 2).astype( bool ), phase, ) return Clifford(data, validate=False, copy=False) @classmethod def _compose_1q(cls, first, second): # 1-qubit composition can be done with a simple lookup table; there are 24 elements in the # 1q Clifford group, so 576 possible combinations, which is small enough to look up. if cls._COMPOSE_1Q_LOOKUP is None: # The valid tables for 1q Cliffords. tables_1q = np.array( [ [[False, True], [True, False]], [[False, True], [True, True]], [[True, False], [False, True]], [[True, False], [True, True]], [[True, True], [False, True]], [[True, True], [True, False]], ] ) phases_1q = np.array([[False, False], [False, True], [True, False], [True, True]]) # Build the lookup table. cliffords = [ cls(cls._stack_table_phase(table, phase), validate=False, copy=False) for table, phase in itertools.product(tables_1q, phases_1q) ] cls._COMPOSE_1Q_LOOKUP = { (cls._hash(left), cls._hash(right)): cls._compose_general(left, right) for left, right in itertools.product(cliffords, repeat=2) } return cls._COMPOSE_1Q_LOOKUP[cls._hash(first), cls._hash(second)].copy() @classmethod def _compose_lookup( cls, ): if cls._COMPOSE_PHASE_LOOKUP is None: # A lookup table for calculating phases. The indices are # current_x, current_z, running_x_count, running_z_count # where all counts taken modulo 2. lookup = np.zeros((2, 2, 2, 2), dtype=int) lookup[0, 1, 1, 0] = lookup[1, 0, 1, 1] = lookup[1, 1, 0, 1] = -1 lookup[0, 1, 1, 1] = lookup[1, 0, 0, 1] = lookup[1, 1, 1, 0] = 1 lookup.setflags(write=False) cls._COMPOSE_PHASE_LOOKUP = lookup return cls._COMPOSE_PHASE_LOOKUP # --------------------------------------------------------------------- # Representation conversions # ---------------------------------------------------------------------
[문서] def to_dict(self): """Return dictionary representation of Clifford object.""" return { "stabilizer": self.to_labels(mode="S"), "destabilizer": self.to_labels(mode="D"), }
[문서] @classmethod def from_dict(cls, obj): """Load a Clifford from a dictionary""" labels = obj.get("destabilizer") + obj.get("stabilizer") n_paulis = len(labels) symp = cls._from_label(labels[0]) tableau = np.zeros((n_paulis, len(symp)), dtype=bool) tableau[0] = symp for i in range(1, n_paulis): tableau[i] = cls._from_label(labels[i]) return cls(tableau)
[문서] def to_matrix(self): """Convert operator to Numpy matrix.""" return self.to_operator().data
[문서] @classmethod def from_matrix(cls, matrix: np.ndarray) -> Clifford: """Create a Clifford from a unitary matrix. Note that this function takes exponentially long time w.r.t. the number of qubits. Args: matrix (np.array): A unitary matrix representing a Clifford to be converted. Returns: Clifford: the Clifford object for the unitary matrix. Raises: QiskitError: if the input is not a Clifford matrix. """ tableau = cls._unitary_matrix_to_tableau(matrix) if tableau is None: raise QiskitError("Non-Clifford matrix is not convertible") return cls(tableau)
[문서] def to_operator(self) -> Operator: """Convert to an Operator object.""" return Operator(self.to_instruction())
[문서] @classmethod def from_operator(cls, operator: Operator) -> Clifford: """Create a Clifford from a operator. Note that this function takes exponentially long time w.r.t. the number of qubits. Args: operator (Operator): An operator representing a Clifford to be converted. Returns: Clifford: the Clifford object for the operator. Raises: QiskitError: if the input is not a Clifford operator. """ tableau = cls._unitary_matrix_to_tableau(operator.to_matrix()) if tableau is None: raise QiskitError("Non-Clifford operator is not convertible") return cls(tableau)
[문서] def to_circuit(self): """Return a QuantumCircuit implementing the Clifford. For N <= 3 qubits this is based on optimal CX cost decomposition from reference [1]. For N > 3 qubits this is done using the general non-optimal compilation routine from reference [2]. Return: QuantumCircuit: a circuit implementation of the Clifford. References: 1. S. Bravyi, D. Maslov, *Hadamard-free circuits expose the structure of the Clifford group*, `arXiv:2003.09412 [quant-ph] <https://arxiv.org/abs/2003.09412>`_ 2. S. Aaronson, D. Gottesman, *Improved Simulation of Stabilizer Circuits*, Phys. Rev. A 70, 052328 (2004). `arXiv:quant-ph/0406196 <https://arxiv.org/abs/quant-ph/0406196>`_ """ from qiskit.synthesis.clifford import synth_clifford_full return synth_clifford_full(self)
[문서] def to_instruction(self): """Return a Gate instruction implementing the Clifford.""" return self.to_circuit().to_gate()
[문서] @staticmethod def from_circuit(circuit: QuantumCircuit | Instruction) -> Clifford: """Initialize from a QuantumCircuit or Instruction. Args: circuit (QuantumCircuit or ~qiskit.circuit.Instruction): instruction to initialize. Returns: Clifford: the Clifford object for the instruction. Raises: QiskitError: if the input instruction is non-Clifford or contains classical register instruction. """ if not isinstance(circuit, (QuantumCircuit, Instruction)): raise QiskitError("Input must be a QuantumCircuit or Instruction") # Initialize an identity Clifford clifford = Clifford(np.eye(2 * circuit.num_qubits), validate=False) if isinstance(circuit, QuantumCircuit): clifford = _append_circuit(clifford, circuit) else: clifford = _append_operation(clifford, circuit) return clifford
[문서] @staticmethod def from_label(label: str) -> Clifford: """Return a tensor product of single-qubit Clifford gates. Args: label (string): single-qubit operator string. Returns: Clifford: The N-qubit Clifford operator. Raises: QiskitError: if the label contains invalid characters. Additional Information: The labels correspond to the single-qubit Cliffords are * - Label - Stabilizer - Destabilizer * - ``"I"`` - +Z - +X * - ``"X"`` - -Z - +X * - ``"Y"`` - -Z - -X * - ``"Z"`` - +Z - -X * - ``"H"`` - +X - +Z * - ``"S"`` - +Z - +Y """ # Check label is valid label_gates = { "I": IGate(), "X": XGate(), "Y": YGate(), "Z": ZGate(), "H": HGate(), "S": SGate(), } if re.match(r"^[IXYZHS\-+]+$", label) is None: raise QiskitError("Label contains invalid characters.") # Initialize an identity matrix and apply each gate num_qubits = len(label) op = Clifford(np.eye(2 * num_qubits, dtype=bool)) for qubit, char in enumerate(reversed(label)): op = _append_operation(op, label_gates[char], qargs=[qubit]) return op
[문서] def to_labels(self, array: bool = False, mode: Literal["S", "D", "B"] = "B"): r"""Convert a Clifford to a list Pauli (de)stabilizer string labels. For large Clifford converting using the ``array=True`` kwarg will be more efficient since it allocates memory for the full Numpy array of labels in advance. .. list-table:: Stabilizer Representations :header-rows: 1 * - Label - Phase - Symplectic - Matrix - Pauli * - ``"+I"`` - 0 - :math:`[0, 0]` - :math:`\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}` - :math:`I` * - ``"-I"`` - 1 - :math:`[0, 0]` - :math:`\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}` - :math:`-I` * - ``"X"`` - 0 - :math:`[1, 0]` - :math:`\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}` - :math:`X` * - ``"-X"`` - 1 - :math:`[1, 0]` - :math:`\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}` - :math:`-X` * - ``"Y"`` - 0 - :math:`[1, 1]` - :math:`\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}` - :math:`iY` * - ``"-Y"`` - 1 - :math:`[1, 1]` - :math:`\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}` - :math:`-iY` * - ``"Z"`` - 0 - :math:`[0, 1]` - :math:`\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}` - :math:`Z` * - ``"-Z"`` - 1 - :math:`[0, 1]` - :math:`\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}` - :math:`-Z` Args: array (bool): return a Numpy array if True, otherwise return a list (Default: False). mode (Literal["S", "D", "B"]): return both stabilizer and destabilizer if "B", return only stabilizer if "S" and return only destabilizer if "D". Returns: list or array: The rows of the StabilizerTable in label form. Raises: QiskitError: if stabilizer and destabilizer are both False. """ if mode not in ("S", "B", "D"): raise QiskitError("mode must be B, S, or D.") size = 2 * self.num_qubits if mode == "B" else self.num_qubits offset = self.num_qubits if mode == "S" else 0 ret = np.zeros(size, dtype=f"<U{1 + self.num_qubits}") for i in range(size): z = self.tableau[i + offset, self.num_qubits : 2 * self.num_qubits] x = self.tableau[i + offset, 0 : self.num_qubits] phase = int(self.tableau[i + offset, -1]) * 2 label = BasePauli._to_label(z, x, phase, group_phase=True) if label[0] != "-": label = "+" + label ret[i] = label if array: return ret return ret.tolist()
# --------------------------------------------------------------------- # Internal helper functions # --------------------------------------------------------------------- def _hash(self): """Produce a hashable value that is unique for each different Clifford. This should only be used internally when the classes being hashed are under our control, because classes of this type are mutable.""" return np.packbits(self.tableau).tobytes() @staticmethod def _is_symplectic(mat): """Return True if input is symplectic matrix.""" # Condition is # table.T * [[0, 1], [1, 0]] * table = [[0, 1], [1, 0]] # where we are block matrix multiplying using symplectic product dim = len(mat) // 2 if mat.shape != (2 * dim, 2 * dim): return False one = np.eye(dim, dtype=int) zero = np.zeros((dim, dim), dtype=int) seye = np.block([[zero, one], [one, zero]]) arr = mat.astype(int) return np.array_equal(np.mod(arr.T.dot(seye).dot(arr), 2), seye) @staticmethod def _conjugate_transpose(clifford, method): """Return the adjoint, conjugate, or transpose of the Clifford. Args: clifford (Clifford): a clifford object. method (str): what function to apply 'A', 'C', or 'T'. Returns: Clifford: the modified clifford. """ ret = clifford.copy() if method in ["A", "T"]: # Apply inverse # Update table tmp = ret.destab_x.copy() ret.destab_x = ret.stab_z.T ret.destab_z = ret.destab_z.T ret.stab_x = ret.stab_x.T ret.stab_z = tmp.T # Update phase ret.phase ^= clifford.dot(ret).phase if method in ["C", "T"]: # Apply conjugate ret.phase ^= np.mod(_count_y(ret.x, ret.z), 2).astype(bool) return ret def _pad_with_identity(self, clifford, qargs): """Pad Clifford with identities on other subsystems.""" if qargs is None: return clifford padded = Clifford(np.eye(2 * self.num_qubits, dtype=bool), validate=False, copy=False) inds = list(qargs) + [self.num_qubits + i for i in qargs] # Pad Pauli array for i, pos in enumerate(qargs): padded.tableau[inds, pos] = clifford.tableau[:, i] padded.tableau[inds, self.num_qubits + pos] = clifford.tableau[ :, clifford.num_qubits + i ] # Pad phase padded.phase[inds] = clifford.phase return padded @staticmethod def _stack_table_phase(table, phase): return np.hstack((table, phase.reshape(len(phase), 1))) @staticmethod def _from_label(label): phase = False if label[0] in ("-", "+"): phase = label[0] == "-" label = label[1:] num_qubits = len(label) symp = np.zeros(2 * num_qubits + 1, dtype=bool) xs = symp[0:num_qubits] zs = symp[num_qubits : 2 * num_qubits] for i, char in enumerate(label): if char not in ["I", "X", "Y", "Z"]: raise QiskitError( f"Pauli string contains invalid character: {char} not in ['I', 'X', 'Y', 'Z']." ) if char in ("X", "Y"): xs[num_qubits - 1 - i] = True if char in ("Z", "Y"): zs[num_qubits - 1 - i] = True symp[-1] = phase return symp @staticmethod def _pauli_matrix_to_row(mat, num_qubits): """Generate a binary vector (a row of tableau representation) from a Pauli matrix. Return None if the non-Pauli matrix is supplied.""" # pylint: disable=too-many-return-statements decimals = 6 def find_one_index(x): indices = np.where(np.round(np.abs(x), decimals=decimals) == 1) return indices[0][0] if len(indices[0]) == 1 else None def bitvector(n, num_bits): return np.array([int(digit) for digit in format(n, f"0{num_bits}b")], dtype=bool)[::-1] # compute x-bits xint = find_one_index(mat[0, :]) if xint is None: return None xbits = bitvector(xint, num_qubits) # extract non-zero elements from matrix (each must be 1, -1, 1j or -1j for Pauli matrix) entries = np.empty(len(mat), dtype=complex) for i, row in enumerate(mat): index = find_one_index(row) if index is None: return None expected = xint ^ i if index != expected: return None entries[i] = np.round(mat[i, index], decimals=decimals) if entries[i] not in {1, -1, 1j, -1j}: return None # compute z-bits zbits = np.empty(num_qubits, dtype=bool) for k in range(num_qubits): sign = np.round(entries[2**k] / entries[0]) if sign == 1: zbits[k] = False elif sign == -1: zbits[k] = True else: return None # compute phase phase = None num_y = sum(xbits & zbits) positive_phase = (-1j) ** num_y if entries[0] == positive_phase: phase = False elif entries[0] == -1 * positive_phase: phase = True if phase is None: return None # validate all non-zero elements coef = ((-1) ** phase) * positive_phase ivec, zvec = np.ones(2), np.array([1, -1]) expected = coef * functools.reduce(np.kron, [zvec if z else ivec for z in zbits[::-1]]) if not np.allclose(entries, expected): return None return np.hstack([xbits, zbits, phase]) @staticmethod def _unitary_matrix_to_tableau(matrix): # pylint: disable=invalid-name num_qubits = int(np.log2(len(matrix))) stab = np.empty((num_qubits, 2 * num_qubits + 1), dtype=bool) for i in range(num_qubits): label = "I" * (num_qubits - i - 1) + "X" + "I" * i Xi = Operator.from_label(label).to_matrix() target = matrix @ Xi @ np.conj(matrix).T row = Clifford._pauli_matrix_to_row(target, num_qubits) if row is None: return None stab[i] = row destab = np.empty((num_qubits, 2 * num_qubits + 1), dtype=bool) for i in range(num_qubits): label = "I" * (num_qubits - i - 1) + "Z" + "I" * i Zi = Operator.from_label(label).to_matrix() target = matrix @ Zi @ np.conj(matrix).T row = Clifford._pauli_matrix_to_row(target, num_qubits) if row is None: return None destab[i] = row tableau = np.vstack([stab, destab]) return tableau
# Update docstrings for API docs generate_apidocs(Clifford)