# This code is part of Qiskit.
#
# (C) Copyright IBM 2017--2023
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Clifford operator class.
"""
from __future__ import annotations
import functools
import itertools
import re
from typing import Literal
import numpy as np
from qiskit.circuit import Instruction, QuantumCircuit
from qiskit.circuit.library.standard_gates import HGate, IGate, SGate, XGate, YGate, ZGate
from qiskit.circuit.operation import Operation
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.base_operator import BaseOperator
from qiskit.quantum_info.operators.mixins import AdjointMixin, generate_apidocs
from qiskit.quantum_info.operators.operator import Operator
from qiskit.quantum_info.operators.scalar_op import ScalarOp
from qiskit.quantum_info.operators.symplectic.base_pauli import _count_y
from qiskit.utils.deprecation import deprecate_func
from .base_pauli import BasePauli
from .clifford_circuits import _append_circuit, _append_operation
from .stabilizer_table import StabilizerTable
[문서]class Clifford(BaseOperator, AdjointMixin, Operation):
"""An N-qubit unitary operator from the Clifford group.
**Representation**
An *N*-qubit Clifford operator is stored as a length *2N × (2N+1)*
boolean tableau using the convention from reference [1].
* Rows 0 to *N-1* are the *destabilizer* group generators
* Rows *N* to *2N-1* are the *stabilizer* group generators.
The internal boolean tableau for the Clifford
can be accessed using the :attr:`tableau` attribute. The destabilizer or
stabilizer rows can each be accessed as a length-N Stabilizer table using
:attr:`destab` and :attr:`stab` attributes.
A more easily human readable representation of the Clifford operator can
be obtained by calling the :meth:`to_dict` method. This representation is
also used if a Clifford object is printed as in the following example
.. code-block::
from qiskit import QuantumCircuit
from qiskit.quantum_info import Clifford
# Bell state generation circuit
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
cliff = Clifford(qc)
# Print the Clifford
print(cliff)
# Print the Clifford destabilizer rows
print(cliff.to_labels(mode="D"))
# Print the Clifford stabilizer rows
print(cliff.to_labels(mode="S"))
.. parsed-literal::
Clifford: Stabilizer = ['+XX', '+ZZ'], Destabilizer = ['+IZ', '+XI']
['+IZ', '+XI']
['+XX', '+ZZ']
**Circuit Conversion**
Clifford operators can be initialized from circuits containing *only* the
following Clifford gates: :class:`~qiskit.circuit.library.IGate`,
:class:`~qiskit.circuit.library.XGate`, :class:`~qiskit.circuit.library.YGate`,
:class:`~qiskit.circuit.library.ZGate`, :class:`~qiskit.circuit.library.HGate`,
:class:`~qiskit.circuit.library.SGate`, :class:`~qiskit.circuit.library.SdgGate`,
:class:`~qiskit.circuit.library.SXGate`, :class:`~qiskit.circuit.library.SXdgGate`,
:class:`~qiskit.circuit.library.CXGate`, :class:`~qiskit.circuit.library.CZGate`,
:class:`~qiskit.circuit.library.CYGate`, :class:`~qiskit.circuit.library.DXGate`,
:class:`~qiskit.circuit.library.SwapGate`, :class:`~qiskit.circuit.library.iSwapGate`,
:class:`~qiskit.circuit.library.ECRGate`.
They can be converted back into a :class:`~qiskit.circuit.QuantumCircuit`,
or :class:`~qiskit.circuit.Gate` object using the :meth:`~Clifford.to_circuit`
or :meth:`~Clifford.to_instruction` methods respectively. Note that this
decomposition is not necessarily optimal in terms of number of gates.
.. note::
A minimally generating set of gates for Clifford circuits is
the :class:`~qiskit.circuit.library.HGate` and
:class:`~qiskit.circuit.library.SGate` gate and *either* the
:class:`~qiskit.circuit.library.CXGate` or
:class:`~qiskit.circuit.library.CZGate` two-qubit gate.
Clifford operators can also be converted to
:class:`~qiskit.quantum_info.Operator` objects using the
:meth:`to_operator` method. This is done via decomposing to a circuit, and then
simulating the circuit as a unitary operator.
References:
1. S. Aaronson, D. Gottesman, *Improved Simulation of Stabilizer Circuits*,
Phys. Rev. A 70, 052328 (2004).
`arXiv:quant-ph/0406196 <https://arxiv.org/abs/quant-ph/0406196>`_
"""
_COMPOSE_PHASE_LOOKUP = None
_COMPOSE_1Q_LOOKUP = None
def __array__(self, dtype=None):
if dtype:
return np.asarray(self.to_matrix(), dtype=dtype)
return self.to_matrix()
def __init__(self, data, validate=True, copy=True):
"""Initialize an operator object."""
# Initialize from another Clifford
if isinstance(data, Clifford):
num_qubits = data.num_qubits
self.tableau = data.tableau.copy() if copy else data.tableau
# Initialize from ScalarOp as N-qubit identity discarding any global phase
elif isinstance(data, ScalarOp):
if not data.num_qubits or not data.is_unitary():
raise QiskitError("Can only initialize from N-qubit identity ScalarOp.")
num_qubits = data.num_qubits
self.tableau = np.fromfunction(
lambda i, j: i == j, (2 * num_qubits, 2 * num_qubits + 1)
).astype(bool)
# Initialize from a QuantumCircuit or Instruction object
elif isinstance(data, (QuantumCircuit, Instruction)):
num_qubits = data.num_qubits
self.tableau = Clifford.from_circuit(data).tableau
# DEPRECATED: data is StabilizerTable
elif isinstance(data, StabilizerTable):
self.tableau = self._stack_table_phase(data.array, data.phase)
num_qubits = data.num_qubits
# Initialize StabilizerTable directly from the data
else:
if isinstance(data, (list, np.ndarray)) and np.asarray(data, dtype=bool).ndim == 2:
data = np.array(data, dtype=bool, copy=copy)
if data.shape[0] == data.shape[1]:
self.tableau = self._stack_table_phase(
data, np.zeros(data.shape[0], dtype=bool)
)
num_qubits = data.shape[0] // 2
elif data.shape[0] + 1 == data.shape[1]:
self.tableau = data
num_qubits = data.shape[0] // 2
else:
raise QiskitError("")
else:
n_paulis = len(data)
symp = self._from_label(data[0])
num_qubits = len(symp) // 2
tableau = np.zeros((n_paulis, len(symp)), dtype=bool)
tableau[0] = symp
for i in range(1, n_paulis):
tableau[i] = self._from_label(data[i])
self.tableau = tableau
# Validate table is a symplectic matrix
if validate and not Clifford._is_symplectic(self.symplectic_matrix):
raise QiskitError(
"Invalid Clifford. Input StabilizerTable is not a valid symplectic matrix."
)
# Initialize BaseOperator
super().__init__(num_qubits=num_qubits)
@property
def name(self):
"""Unique string identifier for operation type."""
return "clifford"
@property
def num_clbits(self):
"""Number of classical bits."""
return 0
def __repr__(self):
return f"Clifford({repr(self.tableau)})"
def __str__(self):
return (
f'Clifford: Stabilizer = {self.to_labels(mode="S")}, '
f'Destabilizer = {self.to_labels(mode="D")}'
)
def __eq__(self, other):
"""Check if two Clifford tables are equal"""
return super().__eq__(other) and (self.tableau == other.tableau).all()
[문서] def copy(self):
return type(self)(self, validate=False, copy=True)
# ---------------------------------------------------------------------
# Attributes
# ---------------------------------------------------------------------
# pylint: disable=bad-docstring-quotes
@deprecate_func(
since="0.24.0",
additional_msg="Instead, index or iterate through the Clifford.tableau attribute.",
)
def __getitem__(self, key):
"""Return a stabilizer Pauli row"""
return self.table.__getitem__(key)
@deprecate_func(since="0.24.0", additional_msg="Use Clifford.tableau property instead.")
def __setitem__(self, key, value):
"""Set a stabilizer Pauli row"""
self.tableau.__setitem__(key, self._stack_table_phase(value.array, value.phase))
@property
@deprecate_func(
since="0.24.0",
additional_msg="Use Clifford.stab and Clifford.destab properties instead.",
is_property=True,
)
def table(self):
"""Return StabilizerTable"""
return StabilizerTable(self.symplectic_matrix, phase=self.phase)
@table.setter
@deprecate_func(
since="0.24.0",
additional_msg="Use Clifford.stab and Clifford.destab properties instead.",
is_property=True,
)
def table(self, value):
"""Set the stabilizer table"""
# Note this setter cannot change the size of the Clifford
# It can only replace the contents of the StabilizerTable with
# another StabilizerTable of the same size.
if not isinstance(value, StabilizerTable):
value = StabilizerTable(value)
self.symplectic_matrix = value._table._array
self.phase = value._table._phase
@property
@deprecate_func(
since="0.24.0",
additional_msg="Use Clifford.stab properties instead.",
is_property=True,
)
def stabilizer(self):
"""Return the stabilizer block of the StabilizerTable."""
array = self.tableau[self.num_qubits : 2 * self.num_qubits, :-1]
phase = self.tableau[self.num_qubits : 2 * self.num_qubits, -1].reshape(self.num_qubits)
return StabilizerTable(array, phase)
@stabilizer.setter
@deprecate_func(
since="0.24.0",
additional_msg="Use Clifford.stab properties instead.",
is_property=True,
)
def stabilizer(self, value):
"""Set the value of stabilizer block of the StabilizerTable"""
if not isinstance(value, StabilizerTable):
value = StabilizerTable(value)
self.tableau[self.num_qubits : 2 * self.num_qubits, :-1] = value.array
@property
@deprecate_func(
since="0.24.0",
additional_msg="Use Clifford.destab properties instead.",
is_property=True,
)
def destabilizer(self):
"""Return the destabilizer block of the StabilizerTable."""
array = self.tableau[0 : self.num_qubits, :-1]
phase = self.tableau[0 : self.num_qubits, -1].reshape(self.num_qubits)
return StabilizerTable(array, phase)
@destabilizer.setter
@deprecate_func(
since="0.24.0",
additional_msg="Use Clifford.destab properties instead.",
is_property=True,
)
def destabilizer(self, value):
"""Set the value of destabilizer block of the StabilizerTable"""
if not isinstance(value, StabilizerTable):
value = StabilizerTable(value)
self.tableau[: self.num_qubits, :-1] = value.array
@property
def symplectic_matrix(self):
"""Return boolean symplectic matrix."""
return self.tableau[:, :-1]
@symplectic_matrix.setter
def symplectic_matrix(self, value):
self.tableau[:, :-1] = value
@property
def phase(self):
"""Return phase with boolean representation."""
return self.tableau[:, -1]
@phase.setter
def phase(self, value):
self.tableau[:, -1] = value
@property
def x(self):
"""The x array for the symplectic representation."""
return self.tableau[:, 0 : self.num_qubits]
@x.setter
def x(self, value):
self.tableau[:, 0 : self.num_qubits] = value
@property
def z(self):
"""The z array for the symplectic representation."""
return self.tableau[:, self.num_qubits : 2 * self.num_qubits]
@z.setter
def z(self, value):
self.tableau[:, self.num_qubits : 2 * self.num_qubits] = value
@property
def destab(self):
"""The destabilizer array for the symplectic representation."""
return self.tableau[: self.num_qubits, :]
@destab.setter
def destab(self, value):
self.tableau[: self.num_qubits, :] = value
@property
def destab_x(self):
"""The destabilizer x array for the symplectic representation."""
return self.tableau[: self.num_qubits, : self.num_qubits]
@destab_x.setter
def destab_x(self, value):
self.tableau[: self.num_qubits, : self.num_qubits] = value
@property
def destab_z(self):
"""The destabilizer z array for the symplectic representation."""
return self.tableau[: self.num_qubits, self.num_qubits : 2 * self.num_qubits]
@destab_z.setter
def destab_z(self, value):
self.tableau[: self.num_qubits, self.num_qubits : 2 * self.num_qubits] = value
@property
def destab_phase(self):
"""Return phase of destabilizer with boolean representation."""
return self.tableau[: self.num_qubits, -1]
@destab_phase.setter
def destab_phase(self, value):
self.tableau[: self.num_qubits, -1] = value
@property
def stab(self):
"""The stabilizer array for the symplectic representation."""
return self.tableau[self.num_qubits :, :]
@stab.setter
def stab(self, value):
self.tableau[self.num_qubits :, :] = value
@property
def stab_x(self):
"""The stabilizer x array for the symplectic representation."""
return self.tableau[self.num_qubits :, : self.num_qubits]
@stab_x.setter
def stab_x(self, value):
self.tableau[self.num_qubits :, : self.num_qubits] = value
@property
def stab_z(self):
"""The stabilizer array for the symplectic representation."""
return self.tableau[self.num_qubits :, self.num_qubits : 2 * self.num_qubits]
@stab_z.setter
def stab_z(self, value):
self.tableau[self.num_qubits :, self.num_qubits : 2 * self.num_qubits] = value
@property
def stab_phase(self):
"""Return phase of stabilizer with boolean representation."""
return self.tableau[self.num_qubits :, -1]
@stab_phase.setter
def stab_phase(self, value):
self.tableau[self.num_qubits :, -1] = value
# ---------------------------------------------------------------------
# Utility Operator methods
# ---------------------------------------------------------------------
[문서] def is_unitary(self):
"""Return True if the Clifford table is valid."""
# A valid Clifford is always unitary, so this function is really
# checking that the underlying Stabilizer table array is a valid
# Clifford array.
return Clifford._is_symplectic(self.symplectic_matrix)
# ---------------------------------------------------------------------
# BaseOperator Abstract Methods
# ---------------------------------------------------------------------
[문서] def conjugate(self):
return Clifford._conjugate_transpose(self, "C")
[문서] def adjoint(self):
return Clifford._conjugate_transpose(self, "A")
[문서] def transpose(self):
return Clifford._conjugate_transpose(self, "T")
[문서] def tensor(self, other: Clifford) -> Clifford:
if not isinstance(other, Clifford):
other = Clifford(other)
return self._tensor(self, other)
[문서] def expand(self, other: Clifford) -> Clifford:
if not isinstance(other, Clifford):
other = Clifford(other)
return self._tensor(other, self)
@classmethod
def _tensor(cls, a, b):
n = a.num_qubits + b.num_qubits
tableau = np.zeros((2 * n, 2 * n + 1), dtype=bool)
clifford = cls(tableau, validate=False)
clifford.destab_x[: b.num_qubits, : b.num_qubits] = b.destab_x
clifford.destab_x[b.num_qubits :, b.num_qubits :] = a.destab_x
clifford.destab_z[: b.num_qubits, : b.num_qubits] = b.destab_z
clifford.destab_z[b.num_qubits :, b.num_qubits :] = a.destab_z
clifford.stab_x[: b.num_qubits, : b.num_qubits] = b.stab_x
clifford.stab_x[b.num_qubits :, b.num_qubits :] = a.stab_x
clifford.stab_z[: b.num_qubits, : b.num_qubits] = b.stab_z
clifford.stab_z[b.num_qubits :, b.num_qubits :] = a.stab_z
clifford.phase[: b.num_qubits] = b.destab_phase
clifford.phase[b.num_qubits : n] = a.destab_phase
clifford.phase[n : n + b.num_qubits] = b.stab_phase
clifford.phase[n + b.num_qubits :] = a.stab_phase
return clifford
[문서] def compose(
self,
other: Clifford | QuantumCircuit | Instruction,
qargs: list | None = None,
front: bool = False,
) -> Clifford:
if qargs is None:
qargs = getattr(other, "qargs", None)
# If other is a QuantumCircuit we can more efficiently compose
# using the _append_circuit method to update each gate recursively
# to the current Clifford, rather than converting to a Clifford first
# and then doing the composition of tables.
if not front:
if isinstance(other, QuantumCircuit):
return _append_circuit(self.copy(), other, qargs=qargs)
if isinstance(other, Instruction):
return _append_operation(self.copy(), other, qargs=qargs)
if not isinstance(other, Clifford):
# Not copying is safe since we're going to drop our only reference to `other` at the end
# of the function.
other = Clifford(other, copy=False)
# Validate compose dimensions
self._op_shape.compose(other._op_shape, qargs, front)
# Pad other with identities if composing on subsystem
other = self._pad_with_identity(other, qargs)
left, right = (self, other) if front else (other, self)
if self.num_qubits == 1:
return self._compose_1q(left, right)
return self._compose_general(left, right)
@classmethod
def _compose_general(cls, first, second):
# Correcting for phase due to Pauli multiplication. Start with factors of -i from XZ = -iY
# on individual qubits, and then handle multiplication between each qubitwise pair.
ifacts = np.sum(second.x & second.z, axis=1, dtype=int)
x1, z1 = first.x.astype(np.uint8), first.z.astype(np.uint8)
lookup = cls._compose_lookup()
# The loop is over 2*n_qubits entries, and the entire loop is cubic in the number of qubits.
for k, row2 in enumerate(second.symplectic_matrix):
x1_select = x1[row2]
z1_select = z1[row2]
x1_accum = np.logical_xor.accumulate(x1_select, axis=0).astype(np.uint8)
z1_accum = np.logical_xor.accumulate(z1_select, axis=0).astype(np.uint8)
indexer = (x1_select[1:], z1_select[1:], x1_accum[:-1], z1_accum[:-1])
ifacts[k] += np.sum(lookup[indexer])
p = np.mod(ifacts, 4) // 2
phase = (
(np.matmul(second.symplectic_matrix, first.phase, dtype=int) + second.phase + p) % 2
).astype(bool)
data = cls._stack_table_phase(
(np.matmul(second.symplectic_matrix, first.symplectic_matrix, dtype=int) % 2).astype(
bool
),
phase,
)
return Clifford(data, validate=False, copy=False)
@classmethod
def _compose_1q(cls, first, second):
# 1-qubit composition can be done with a simple lookup table; there are 24 elements in the
# 1q Clifford group, so 576 possible combinations, which is small enough to look up.
if cls._COMPOSE_1Q_LOOKUP is None:
# The valid tables for 1q Cliffords.
tables_1q = np.array(
[
[[False, True], [True, False]],
[[False, True], [True, True]],
[[True, False], [False, True]],
[[True, False], [True, True]],
[[True, True], [False, True]],
[[True, True], [True, False]],
]
)
phases_1q = np.array([[False, False], [False, True], [True, False], [True, True]])
# Build the lookup table.
cliffords = [
cls(cls._stack_table_phase(table, phase), validate=False, copy=False)
for table, phase in itertools.product(tables_1q, phases_1q)
]
cls._COMPOSE_1Q_LOOKUP = {
(cls._hash(left), cls._hash(right)): cls._compose_general(left, right)
for left, right in itertools.product(cliffords, repeat=2)
}
return cls._COMPOSE_1Q_LOOKUP[cls._hash(first), cls._hash(second)].copy()
@classmethod
def _compose_lookup(
cls,
):
if cls._COMPOSE_PHASE_LOOKUP is None:
# A lookup table for calculating phases. The indices are
# current_x, current_z, running_x_count, running_z_count
# where all counts taken modulo 2.
lookup = np.zeros((2, 2, 2, 2), dtype=int)
lookup[0, 1, 1, 0] = lookup[1, 0, 1, 1] = lookup[1, 1, 0, 1] = -1
lookup[0, 1, 1, 1] = lookup[1, 0, 0, 1] = lookup[1, 1, 1, 0] = 1
lookup.setflags(write=False)
cls._COMPOSE_PHASE_LOOKUP = lookup
return cls._COMPOSE_PHASE_LOOKUP
# ---------------------------------------------------------------------
# Representation conversions
# ---------------------------------------------------------------------
[문서] def to_dict(self):
"""Return dictionary representation of Clifford object."""
return {
"stabilizer": self.to_labels(mode="S"),
"destabilizer": self.to_labels(mode="D"),
}
[문서] @classmethod
def from_dict(cls, obj):
"""Load a Clifford from a dictionary"""
labels = obj.get("destabilizer") + obj.get("stabilizer")
n_paulis = len(labels)
symp = cls._from_label(labels[0])
tableau = np.zeros((n_paulis, len(symp)), dtype=bool)
tableau[0] = symp
for i in range(1, n_paulis):
tableau[i] = cls._from_label(labels[i])
return cls(tableau)
[문서] def to_matrix(self):
"""Convert operator to Numpy matrix."""
return self.to_operator().data
[문서] @classmethod
def from_matrix(cls, matrix: np.ndarray) -> Clifford:
"""Create a Clifford from a unitary matrix.
Note that this function takes exponentially long time w.r.t. the number of qubits.
Args:
matrix (np.array): A unitary matrix representing a Clifford to be converted.
Returns:
Clifford: the Clifford object for the unitary matrix.
Raises:
QiskitError: if the input is not a Clifford matrix.
"""
tableau = cls._unitary_matrix_to_tableau(matrix)
if tableau is None:
raise QiskitError("Non-Clifford matrix is not convertible")
return cls(tableau)
[문서] def to_operator(self) -> Operator:
"""Convert to an Operator object."""
return Operator(self.to_instruction())
[문서] @classmethod
def from_operator(cls, operator: Operator) -> Clifford:
"""Create a Clifford from a operator.
Note that this function takes exponentially long time w.r.t. the number of qubits.
Args:
operator (Operator): An operator representing a Clifford to be converted.
Returns:
Clifford: the Clifford object for the operator.
Raises:
QiskitError: if the input is not a Clifford operator.
"""
tableau = cls._unitary_matrix_to_tableau(operator.to_matrix())
if tableau is None:
raise QiskitError("Non-Clifford operator is not convertible")
return cls(tableau)
[문서] def to_circuit(self):
"""Return a QuantumCircuit implementing the Clifford.
For N <= 3 qubits this is based on optimal CX cost decomposition
from reference [1]. For N > 3 qubits this is done using the general
non-optimal compilation routine from reference [2].
Return:
QuantumCircuit: a circuit implementation of the Clifford.
References:
1. S. Bravyi, D. Maslov, *Hadamard-free circuits expose the
structure of the Clifford group*,
`arXiv:2003.09412 [quant-ph] <https://arxiv.org/abs/2003.09412>`_
2. S. Aaronson, D. Gottesman, *Improved Simulation of Stabilizer Circuits*,
Phys. Rev. A 70, 052328 (2004).
`arXiv:quant-ph/0406196 <https://arxiv.org/abs/quant-ph/0406196>`_
"""
from qiskit.synthesis.clifford import synth_clifford_full
return synth_clifford_full(self)
[문서] def to_instruction(self):
"""Return a Gate instruction implementing the Clifford."""
return self.to_circuit().to_gate()
[문서] @staticmethod
def from_circuit(circuit: QuantumCircuit | Instruction) -> Clifford:
"""Initialize from a QuantumCircuit or Instruction.
Args:
circuit (QuantumCircuit or ~qiskit.circuit.Instruction):
instruction to initialize.
Returns:
Clifford: the Clifford object for the instruction.
Raises:
QiskitError: if the input instruction is non-Clifford or contains
classical register instruction.
"""
if not isinstance(circuit, (QuantumCircuit, Instruction)):
raise QiskitError("Input must be a QuantumCircuit or Instruction")
# Initialize an identity Clifford
clifford = Clifford(np.eye(2 * circuit.num_qubits), validate=False)
if isinstance(circuit, QuantumCircuit):
clifford = _append_circuit(clifford, circuit)
else:
clifford = _append_operation(clifford, circuit)
return clifford
[문서] @staticmethod
def from_label(label: str) -> Clifford:
"""Return a tensor product of single-qubit Clifford gates.
Args:
label (string): single-qubit operator string.
Returns:
Clifford: The N-qubit Clifford operator.
Raises:
QiskitError: if the label contains invalid characters.
Additional Information:
The labels correspond to the single-qubit Cliffords are
* - Label
- Stabilizer
- Destabilizer
* - ``"I"``
- +Z
- +X
* - ``"X"``
- -Z
- +X
* - ``"Y"``
- -Z
- -X
* - ``"Z"``
- +Z
- -X
* - ``"H"``
- +X
- +Z
* - ``"S"``
- +Z
- +Y
"""
# Check label is valid
label_gates = {
"I": IGate(),
"X": XGate(),
"Y": YGate(),
"Z": ZGate(),
"H": HGate(),
"S": SGate(),
}
if re.match(r"^[IXYZHS\-+]+$", label) is None:
raise QiskitError("Label contains invalid characters.")
# Initialize an identity matrix and apply each gate
num_qubits = len(label)
op = Clifford(np.eye(2 * num_qubits, dtype=bool))
for qubit, char in enumerate(reversed(label)):
op = _append_operation(op, label_gates[char], qargs=[qubit])
return op
[문서] def to_labels(self, array: bool = False, mode: Literal["S", "D", "B"] = "B"):
r"""Convert a Clifford to a list Pauli (de)stabilizer string labels.
For large Clifford converting using the ``array=True``
kwarg will be more efficient since it allocates memory for
the full Numpy array of labels in advance.
.. list-table:: Stabilizer Representations
:header-rows: 1
* - Label
- Phase
- Symplectic
- Matrix
- Pauli
* - ``"+I"``
- 0
- :math:`[0, 0]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}`
- :math:`I`
* - ``"-I"``
- 1
- :math:`[0, 0]`
- :math:`\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}`
- :math:`-I`
* - ``"X"``
- 0
- :math:`[1, 0]`
- :math:`\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}`
- :math:`X`
* - ``"-X"``
- 1
- :math:`[1, 0]`
- :math:`\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}`
- :math:`-X`
* - ``"Y"``
- 0
- :math:`[1, 1]`
- :math:`\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}`
- :math:`iY`
* - ``"-Y"``
- 1
- :math:`[1, 1]`
- :math:`\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}`
- :math:`-iY`
* - ``"Z"``
- 0
- :math:`[0, 1]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}`
- :math:`Z`
* - ``"-Z"``
- 1
- :math:`[0, 1]`
- :math:`\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}`
- :math:`-Z`
Args:
array (bool): return a Numpy array if True, otherwise
return a list (Default: False).
mode (Literal["S", "D", "B"]): return both stabilizer and destabilizer if "B",
return only stabilizer if "S" and return only destabilizer if "D".
Returns:
list or array: The rows of the StabilizerTable in label form.
Raises:
QiskitError: if stabilizer and destabilizer are both False.
"""
if mode not in ("S", "B", "D"):
raise QiskitError("mode must be B, S, or D.")
size = 2 * self.num_qubits if mode == "B" else self.num_qubits
offset = self.num_qubits if mode == "S" else 0
ret = np.zeros(size, dtype=f"<U{1 + self.num_qubits}")
for i in range(size):
z = self.tableau[i + offset, self.num_qubits : 2 * self.num_qubits]
x = self.tableau[i + offset, 0 : self.num_qubits]
phase = int(self.tableau[i + offset, -1]) * 2
label = BasePauli._to_label(z, x, phase, group_phase=True)
if label[0] != "-":
label = "+" + label
ret[i] = label
if array:
return ret
return ret.tolist()
# ---------------------------------------------------------------------
# Internal helper functions
# ---------------------------------------------------------------------
def _hash(self):
"""Produce a hashable value that is unique for each different Clifford. This should only be
used internally when the classes being hashed are under our control, because classes of this
type are mutable."""
return np.packbits(self.tableau).tobytes()
@staticmethod
def _is_symplectic(mat):
"""Return True if input is symplectic matrix."""
# Condition is
# table.T * [[0, 1], [1, 0]] * table = [[0, 1], [1, 0]]
# where we are block matrix multiplying using symplectic product
dim = len(mat) // 2
if mat.shape != (2 * dim, 2 * dim):
return False
one = np.eye(dim, dtype=int)
zero = np.zeros((dim, dim), dtype=int)
seye = np.block([[zero, one], [one, zero]])
arr = mat.astype(int)
return np.array_equal(np.mod(arr.T.dot(seye).dot(arr), 2), seye)
@staticmethod
def _conjugate_transpose(clifford, method):
"""Return the adjoint, conjugate, or transpose of the Clifford.
Args:
clifford (Clifford): a clifford object.
method (str): what function to apply 'A', 'C', or 'T'.
Returns:
Clifford: the modified clifford.
"""
ret = clifford.copy()
if method in ["A", "T"]:
# Apply inverse
# Update table
tmp = ret.destab_x.copy()
ret.destab_x = ret.stab_z.T
ret.destab_z = ret.destab_z.T
ret.stab_x = ret.stab_x.T
ret.stab_z = tmp.T
# Update phase
ret.phase ^= clifford.dot(ret).phase
if method in ["C", "T"]:
# Apply conjugate
ret.phase ^= np.mod(_count_y(ret.x, ret.z), 2).astype(bool)
return ret
def _pad_with_identity(self, clifford, qargs):
"""Pad Clifford with identities on other subsystems."""
if qargs is None:
return clifford
padded = Clifford(np.eye(2 * self.num_qubits, dtype=bool), validate=False, copy=False)
inds = list(qargs) + [self.num_qubits + i for i in qargs]
# Pad Pauli array
for i, pos in enumerate(qargs):
padded.tableau[inds, pos] = clifford.tableau[:, i]
padded.tableau[inds, self.num_qubits + pos] = clifford.tableau[
:, clifford.num_qubits + i
]
# Pad phase
padded.phase[inds] = clifford.phase
return padded
@staticmethod
def _stack_table_phase(table, phase):
return np.hstack((table, phase.reshape(len(phase), 1)))
@staticmethod
def _from_label(label):
phase = False
if label[0] in ("-", "+"):
phase = label[0] == "-"
label = label[1:]
num_qubits = len(label)
symp = np.zeros(2 * num_qubits + 1, dtype=bool)
xs = symp[0:num_qubits]
zs = symp[num_qubits : 2 * num_qubits]
for i, char in enumerate(label):
if char not in ["I", "X", "Y", "Z"]:
raise QiskitError(
f"Pauli string contains invalid character: {char} not in ['I', 'X', 'Y', 'Z']."
)
if char in ("X", "Y"):
xs[num_qubits - 1 - i] = True
if char in ("Z", "Y"):
zs[num_qubits - 1 - i] = True
symp[-1] = phase
return symp
@staticmethod
def _pauli_matrix_to_row(mat, num_qubits):
"""Generate a binary vector (a row of tableau representation) from a Pauli matrix.
Return None if the non-Pauli matrix is supplied."""
# pylint: disable=too-many-return-statements
decimals = 6
def find_one_index(x):
indices = np.where(np.round(np.abs(x), decimals=decimals) == 1)
return indices[0][0] if len(indices[0]) == 1 else None
def bitvector(n, num_bits):
return np.array([int(digit) for digit in format(n, f"0{num_bits}b")], dtype=bool)[::-1]
# compute x-bits
xint = find_one_index(mat[0, :])
if xint is None:
return None
xbits = bitvector(xint, num_qubits)
# extract non-zero elements from matrix (each must be 1, -1, 1j or -1j for Pauli matrix)
entries = np.empty(len(mat), dtype=complex)
for i, row in enumerate(mat):
index = find_one_index(row)
if index is None:
return None
expected = xint ^ i
if index != expected:
return None
entries[i] = np.round(mat[i, index], decimals=decimals)
if entries[i] not in {1, -1, 1j, -1j}:
return None
# compute z-bits
zbits = np.empty(num_qubits, dtype=bool)
for k in range(num_qubits):
sign = np.round(entries[2**k] / entries[0])
if sign == 1:
zbits[k] = False
elif sign == -1:
zbits[k] = True
else:
return None
# compute phase
phase = None
num_y = sum(xbits & zbits)
positive_phase = (-1j) ** num_y
if entries[0] == positive_phase:
phase = False
elif entries[0] == -1 * positive_phase:
phase = True
if phase is None:
return None
# validate all non-zero elements
coef = ((-1) ** phase) * positive_phase
ivec, zvec = np.ones(2), np.array([1, -1])
expected = coef * functools.reduce(np.kron, [zvec if z else ivec for z in zbits[::-1]])
if not np.allclose(entries, expected):
return None
return np.hstack([xbits, zbits, phase])
@staticmethod
def _unitary_matrix_to_tableau(matrix):
# pylint: disable=invalid-name
num_qubits = int(np.log2(len(matrix)))
stab = np.empty((num_qubits, 2 * num_qubits + 1), dtype=bool)
for i in range(num_qubits):
label = "I" * (num_qubits - i - 1) + "X" + "I" * i
Xi = Operator.from_label(label).to_matrix()
target = matrix @ Xi @ np.conj(matrix).T
row = Clifford._pauli_matrix_to_row(target, num_qubits)
if row is None:
return None
stab[i] = row
destab = np.empty((num_qubits, 2 * num_qubits + 1), dtype=bool)
for i in range(num_qubits):
label = "I" * (num_qubits - i - 1) + "Z" + "I" * i
Zi = Operator.from_label(label).to_matrix()
target = matrix @ Zi @ np.conj(matrix).T
row = Clifford._pauli_matrix_to_row(target, num_qubits)
if row is None:
return None
destab[i] = row
tableau = np.vstack([stab, destab])
return tableau
# Update docstrings for API docs
generate_apidocs(Clifford)