CCXGate#
- class qiskit.circuit.library.CCXGate(label=None, ctrl_state=None)[소스]#
기반 클래스:
ControlledGate
CCX gate, also known as Toffoli gate.
Can be applied to a
QuantumCircuit
with theccx()
andtoffoli()
methods.Circuit symbol:
q_0: ──■── │ q_1: ──■── ┌─┴─┐ q_2: ┤ X ├ └───┘
Matrix representation:
\[\begin{split}CCX q_0, q_1, q_2 = I \otimes I \otimes |0 \rangle \langle 0| + CX \otimes |1 \rangle \langle 1| = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}\end{split}\]참고
In Qiskit’s convention, higher qubit indices are more significant (little endian convention). In many textbooks, controlled gates are presented with the assumption of more significant qubits as control, which in our case would be q_2 and q_1. Thus a textbook matrix for this gate will be:
┌───┐ q_0: ┤ X ├ └─┬─┘ q_1: ──■── │ q_2: ──■──
\[\begin{split}CCX\ q_2, q_1, q_0 = |0 \rangle \langle 0| \otimes I \otimes I + |1 \rangle \langle 1| \otimes CX = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}\end{split}\]Create new CCX gate.
Attributes
- condition_bits#
Get Clbits in condition.
- ctrl_state#
Return the control state of the gate as a decimal integer.
- decompositions#
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
- definition#
Return definition in terms of other basic gates. If the gate has open controls, as determined from self.ctrl_state, the returned definition is conjugated with X without changing the internal _definition.
- duration#
Get the duration.
- label#
Return instruction label
- name#
Get name of gate. If the gate has open controls the gate name will become:
<original_name_o<ctrl_state>
where <original_name> is the gate name for the default case of closed control qubits and <ctrl_state> is the integer value of the control state for the gate.
- num_clbits#
Return the number of clbits.
- num_ctrl_qubits#
Get number of control qubits.
- 반환:
The number of control qubits for the gate.
- 반환 형식:
- num_qubits#
Return the number of qubits.
- params#
Get parameters from base_gate.
- 반환:
List of gate parameters.
- 반환 형식:
- 예외 발생:
CircuitError – Controlled gate does not define a base gate
- unit#
Get the time unit of duration.
Methods