RYYGate#
- class qiskit.circuit.library.RYYGate(theta, label=None)[ソース]#
ベースクラス:
Gate
A parametric 2-qubit \(Y \otimes Y\) interaction (rotation about YY).
This gate is symmetric, and is maximally entangling at \(\theta = \pi/2\).
Can be applied to a
QuantumCircuit
with theryy()
method.Circuit Symbol:
┌─────────┐ q_0: ┤1 ├ │ Ryy(ϴ) │ q_1: ┤0 ├ └─────────┘
Matrix Representation:
\[ \begin{align}\begin{aligned}\newcommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{YY}(\theta) = \exp\left(-i \th Y{\otimes}Y\right) = \begin{pmatrix} \cos\left(\th\right) & 0 & 0 & i\sin\left(\th\right) \\ 0 & \cos\left(\th\right) & -i\sin\left(\th\right) & 0 \\ 0 & -i\sin\left(\th\right) & \cos\left(\th\right) & 0 \\ i\sin\left(\th\right) & 0 & 0 & \cos\left(\th\right) \end{pmatrix}\end{split}\end{aligned}\end{align} \]Examples:
\[R_{YY}(\theta = 0) = I\]\[R_{YY}(\theta = \pi) = i Y \otimes Y\]\[\begin{split}R_{YY}\left(\theta = \frac{\pi}{2}\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & -i & 0 \\ 0 & -i & 1 & 0 \\ i & 0 & 0 & 1 \end{pmatrix}\end{split}\]Create new RYY gate.
Attributes
- condition_bits#
Get Clbits in condition.
- decompositions#
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
- definition#
Return definition in terms of other basic gates.
- duration#
Get the duration.
- label#
Return instruction label
- name#
Return the name.
- num_clbits#
Return the number of clbits.
- num_qubits#
Return the number of qubits.
- params#
return instruction params.
- unit#
Get the time unit of duration.
Methods