PauliTable#
- class qiskit.quantum_info.PauliTable(data)[ソース]#
ベースクラス:
BaseOperator
,AdjointMixin
DEPRECATED: Symplectic representation of a list Pauli matrices.
Symplectic Representation
The symplectic representation of a single-qubit Pauli matrix is a pair of boolean values \([x, z]\) such that the Pauli matrix is given by \(P = (-i)^{z * x} \sigma_z^z.\sigma_x^x\). The correspondence between labels, symplectic representation, and matrices for single-qubit Paulis are shown in Table 1.
Table 5 Pauli Representations# Label
Symplectic
Matrix
"I"
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
"X"
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
"Y"
\([1, 1]\)
\(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\)
"Z"
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
The full Pauli table is a M x 2N boolean matrix:
\[\begin{split}\left(\begin{array}{ccc|ccc} x_{0,0} & ... & x_{0,N-1} & z_{0,0} & ... & z_{0,N-1} \\ x_{1,0} & ... & x_{1,N-1} & z_{1,0} & ... & z_{1,N-1} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ x_{M-1,0} & ... & x_{M-1,N-1} & z_{M-1,0} & ... & z_{M-1,N-1} \end{array}\right)\end{split}\]where each row is a block vector \([X_i, Z_i]\) with \(X = [x_{i,0}, ..., x_{i,N-1}]\), \(Z = [z_{i,0}, ..., z_{i,N-1}]\) is the symplectic representation of an N-qubit Pauli. This representation is based on reference [1].
PauliTable’s can be created from a list of labels using
from_labels()
, and converted to a list of labels or a list of matrices usingto_labels()
andto_matrix()
respectively.Group Product
The Pauli’s in the Pauli table do not represent the full Pauli as they are restricted to having +1 phase. The dot-product for the Pauli’s is defined to discard any phase obtained from matrix multiplication so that we have \(X.Z = Z.X = Y\), etc. This means that for the PauliTable class the operator methods
compose()
anddot()
are equivalent.A.B
I
X
Y
Z
I
I
X
Y
Z
X
X
I
Z
Y
Y
Y
Z
I
X
Z
Z
Y
X
I
Qubit Ordering
The qubits are ordered in the table such the least significant qubit [x_{i, 0}, z_{i, 0}] is the first element of each of the \(X_i, Z_i\) vector blocks. This is the opposite order to position in string labels or matrix tensor products where the least significant qubit is the right-most string character. For example Pauli
"ZX"
has"X"
on qubit-0 and"Z"
on qubit 1, and would have symplectic vectors \(x=[1, 0]\), \(z=[0, 1]\).Data Access
Subsets of rows can be accessed using the list access
[]
operator and will return a table view of part of the PauliTable. The underlying Numpy array can be directly accessed using thearray
property, and the sub-arrays for only the X or Z blocks can be accessed using theX
andZ
properties respectively.Iteration
Rows in the Pauli table can be iterated over like a list. Iteration can also be done using the label or matrix representation of each row using the
label_iter()
andmatrix_iter()
methods.参照
S. Aaronson, D. Gottesman, Improved Simulation of Stabilizer Circuits, Phys. Rev. A 70, 052328 (2004). arXiv:quant-ph/0406196
Initialize the PauliTable.
バージョン 0.24.0 で非推奨: The class
qiskit.quantum_info.operators.symplectic.pauli_table.PauliTable
is deprecated as of qiskit-terra 0.24.0. It will be removed no earlier than 3 months after the release date. Instead, use the class PauliList- パラメータ:
data (array or str or ScalarOp or PauliTable) – input data.
- 例外:
QiskitError – if input array is invalid shape.
- Additional Information:
The input array is not copied so multiple Pauli tables can share the same underlying array.
Attributes
- array#
The underlying boolean array.
- dim#
Return tuple (input_shape, output_shape).
- num_qubits#
Return the number of qubits if a N-qubit operator or None otherwise.
- qargs#
Return the qargs for the operator.
- settings#
Return settings.
- size#
The number of Pauli rows in the table.
Methods
- adjoint()#
Return the adjoint of the Operator.
- 戻り値の型:
Self
- anticommutes_with_all(other)[ソース]#
Return indexes of rows that commute other.
If other is a multi-row Pauli table the returned vector indexes rows of the current PauliTable that anti-commute with all Pauli’s in other. If no rows satisfy the condition the returned array will be empty.
- パラメータ:
other (PauliTable) – a single Pauli or multi-row PauliTable.
- 戻り値:
index array of the anti-commuting rows.
- 戻り値の型:
array
- argsort(weight=False)[ソース]#
Return indices for sorting the rows of the table.
The default sort method is lexicographic sorting by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Pauli, where the set of all Pauli’s of a given weight are still ordered lexicographically.
- パラメータ:
weight (bool) – optionally sort by weight if True (Default: False).
- 戻り値:
the indices for sorting the table.
- 戻り値の型:
array
- commutes(pauli)[ソース]#
Return list of commutation properties for each row with a Pauli.
The returned vector is the same length as the size of the table and contains True for rows that commute with the Pauli, and False for the rows that anti-commute.
- パラメータ:
pauli (PauliTable) – a single Pauli row.
- 戻り値:
The boolean vector of which rows commute or anti-commute.
- 戻り値の型:
array
- 例外:
QiskitError – if input is not a single Pauli row.
- commutes_with_all(other)[ソース]#
Return indexes of rows that commute other.
If other is a multi-row Pauli table the returned vector indexes rows of the current PauliTable that commute with all Pauli’s in other. If no rows satisfy the condition the returned array will be empty.
- パラメータ:
other (PauliTable) – a single Pauli or multi-row PauliTable.
- 戻り値:
index array of the commuting rows.
- 戻り値の型:
array
- compose(other, qargs=None, front=True)[ソース]#
Return the compose output product of two tables.
This returns the combination of the dot product of all Paulis in the current table with all Pauli’s in the other table and discards the complex phase from the product. Note that for PauliTables this method is equivalent to
dot()
and hence thefront
kwarg does not change the output.Example
from qiskit.quantum_info.operators import PauliTable current = PauliTable.from_labels(['I', 'X']) other = PauliTable.from_labels(['Y', 'Z']) print(current.compose(other))
PauliTable: ['Y', 'Z', 'Z', 'Y']
- パラメータ:
other (PauliTable) – another PauliTable.
qargs (None or list) – qubits to apply dot product on (Default: None).
front (bool) – If True use dot composition method [default: False].
- 戻り値:
the compose outer product table.
- 戻り値の型:
- 例外:
QiskitError – if other cannot be converted to a PauliTable.
- copy()#
Make a deep copy of current operator.
- delete(ind, qubit=False)[ソース]#
Return a copy with Pauli rows deleted from table.
When deleting qubits the qubit index is the same as the column index of the underlying
X
andZ
arrays.- パラメータ:
- 戻り値:
the resulting table with the entries removed.
- 戻り値の型:
- 例外:
QiskitError – if ind is out of bounds for the array size or number of qubits.
- dot(other, qargs=None)[ソース]#
Return the dot output product of two tables.
This returns the combination of the dot product of all Paulis in the current table with all Pauli’s in the other table and discards the complex phase from the product. Note that for PauliTables this method is equivalent to
compose()
.Example
from qiskit.quantum_info.operators import PauliTable current = PauliTable.from_labels(['I', 'X']) other = PauliTable.from_labels(['Y', 'Z']) print(current.dot(other))
PauliTable: ['Y', 'Z', 'Z', 'Y']
- パラメータ:
other (PauliTable) – another PauliTable.
qargs (None or list) – qubits to apply dot product on (Default: None).
- 戻り値:
the dot outer product table.
- 戻り値の型:
- 例外:
QiskitError – if other cannot be converted to a PauliTable.
- expand(other)[ソース]#
Return the expand output product of two tables.
This returns the combination of the tensor product of all Paulis in the other table with all Pauli’s in the current table, with the current tables qubits being the least-significant in the returned table. This is the opposite tensor order to
tensor()
.Example
from qiskit.quantum_info.operators import PauliTable current = PauliTable.from_labels(['I', 'X']) other = PauliTable.from_labels(['Y', 'Z']) print(current.expand(other))
PauliTable: ['YI', 'YX', 'ZI', 'ZX']
- パラメータ:
other (PauliTable) – another PauliTable.
- 戻り値:
the expand outer product table.
- 戻り値の型:
- 例外:
QiskitError – if other cannot be converted to a PauliTable.
- classmethod from_labels(labels)[ソース]#
Construct a PauliTable from a list of Pauli strings.
- パラメータ:
labels (list) – Pauli string label(es).
- 戻り値:
the constructed PauliTable.
- 戻り値の型:
- 例外:
QiskitError – If the input list is empty or contains invalid
Pauli strings. –
- input_dims(qargs=None)#
Return tuple of input dimension for specified subsystems.
- insert(ind, value, qubit=False)[ソース]#
Insert Pauli’s into the table.
When inserting qubits the qubit index is the same as the column index of the underlying
X
andZ
arrays.- パラメータ:
ind (int) – index to insert at.
value (PauliTable) – values to insert.
qubit (bool) – if True delete qubit columns, otherwise delete Pauli rows (Default: False).
- 戻り値:
the resulting table with the entries inserted.
- 戻り値の型:
- 例外:
QiskitError – if the insertion index is invalid.
- label_iter()[ソース]#
Return a label representation iterator.
This is a lazy iterator that converts each row into the string label only as it is used. To convert the entire table to labels use the
to_labels()
method.- 戻り値:
label iterator object for the PauliTable.
- 戻り値の型:
LabelIterator
- matrix_iter(sparse=False)[ソース]#
Return a matrix representation iterator.
This is a lazy iterator that converts each row into the Pauli matrix representation only as it is used. To convert the entire table to matrices use the
to_matrix()
method.- パラメータ:
sparse (bool) – optionally return sparse CSR matrices if True, otherwise return Numpy array matrices (Default: False)
- 戻り値:
matrix iterator object for the PauliTable.
- 戻り値の型:
MatrixIterator
- output_dims(qargs=None)#
Return tuple of output dimension for specified subsystems.
- power(n)#
Return the compose of a operator with itself n times.
- パラメータ:
n (int) – the number of times to compose with self (n>0).
- 戻り値:
the n-times composed operator.
- 戻り値の型:
- 例外:
QiskitError – if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
- reshape(input_dims=None, output_dims=None, num_qubits=None)#
Return a shallow copy with reshaped input and output subsystem dimensions.
- パラメータ:
input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
- 戻り値:
returns self with reshaped input and output dimensions.
- 戻り値の型:
BaseOperator
- 例外:
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
- sort(weight=False)[ソース]#
Sort the rows of the table.
The default sort method is lexicographic sorting by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Pauli, where the set of all Pauli’s of a given weight are still ordered lexicographically.
Example
Consider sorting all a random ordering of all 2-qubit Paulis
from numpy.random import shuffle from qiskit.quantum_info.operators import PauliTable # 2-qubit labels labels = ['II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ', 'YI', 'YX', 'YY', 'YZ', 'ZI', 'ZX', 'ZY', 'ZZ'] # Shuffle Labels shuffle(labels) pt = PauliTable.from_labels(labels) print('Initial Ordering') print(pt) # Lexicographic Ordering srt = pt.sort() print('Lexicographically sorted') print(srt) # Weight Ordering srt = pt.sort(weight=True) print('Weight sorted') print(srt)
Initial Ordering PauliTable: [ 'IZ', 'XZ', 'ZY', 'YI', 'YZ', 'IX', 'II', 'ZI', 'IY', 'XY', 'XI', 'YY', 'ZX', 'XX', 'ZZ', 'YX' ] Lexicographically sorted PauliTable: [ 'II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ', 'YI', 'YX', 'YY', 'YZ', 'ZI', 'ZX', 'ZY', 'ZZ' ] Weight sorted PauliTable: [ 'II', 'IX', 'IY', 'IZ', 'XI', 'YI', 'ZI', 'XX', 'XY', 'XZ', 'YX', 'YY', 'YZ', 'ZX', 'ZY', 'ZZ' ]
- パラメータ:
weight (bool) – optionally sort by weight if True (Default: False).
- 戻り値:
a sorted copy of the original table.
- 戻り値の型:
- tensor(other)[ソース]#
Return the tensor output product of two tables.
This returns the combination of the tensor product of all Paulis in the current table with all Pauli’s in the other table, with the other tables qubits being the least-significant in the returned table. This is the opposite tensor order to
expand()
.Example
from qiskit.quantum_info.operators import PauliTable current = PauliTable.from_labels(['I', 'X']) other = PauliTable.from_labels(['Y', 'Z']) print(current.tensor(other))
PauliTable: ['IY', 'IZ', 'XY', 'XZ']
- パラメータ:
other (PauliTable) – another PauliTable.
- 戻り値:
the tensor outer product table.
- 戻り値の型:
- 例外:
QiskitError – if other cannot be converted to a PauliTable.
- to_labels(array=False)[ソース]#
Convert a PauliTable to a list Pauli string labels.
For large PauliTables converting using the
array=True
kwarg will be more efficient since it allocates memory for the full Numpy array of labels in advance.Table 6 Pauli Representations# Label
Symplectic
Matrix
"I"
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
"X"
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
"Y"
\([1, 1]\)
\(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\)
"Z"
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
- to_matrix(sparse=False, array=False)[ソース]#
Convert to a list or array of Pauli matrices.
For large PauliTables converting using the
array=True
kwarg will be more efficient since it allocates memory a full rank-3 Numpy array of matrices in advance.Table 7 Pauli Representations# Label
Symplectic
Matrix
"I"
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
"X"
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
"Y"
\([1, 1]\)
\(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\)
"Z"
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
- パラメータ:
- 戻り値:
A list of dense Pauli matrices if array=False and sparse=False. list: A list of sparse Pauli matrices if array=False and sparse=True. array: A dense rank-3 array of Pauli matrices if array=True.
- 戻り値の型:
- unique(return_index=False, return_counts=False)[ソース]#
Return unique Paulis from the table.
Example
from qiskit.quantum_info.operators import PauliTable pt = PauliTable.from_labels(['X', 'Y', 'X', 'I', 'I', 'Z', 'X', 'Z']) unique = pt.unique() print(unique)
PauliTable: ['X', 'Y', 'I', 'Z']
- パラメータ:
- 戻り値:
- unique
the table of the unique rows.
- unique_indices: np.ndarray, optional
The indices of the first occurrences of the unique values in the original array. Only provided if
return_index
is True.- unique_counts: np.array, optional
The number of times each of the unique values comes up in the original array. Only provided if
return_counts
is True.
- 戻り値の型: