DraperQFTAdder#
- class qiskit.circuit.library.DraperQFTAdder(num_state_qubits, kind='fixed', name='DraperQFTAdder')[ソース]#
ベースクラス:
Adder
A circuit that uses QFT to perform in-place addition on two qubit registers.
For registers with \(n\) qubits, the QFT adder can perform addition modulo \(2^n\) (with
kind="fixed"
) or ordinary addition by adding a carry qubits (withkind="half"
).As an example, a non-fixed_point QFT adder circuit that performs addition on two 2-qubit sized registers is as follows:
a_0: ─────────■──────■────────────────────────■──────────────── │ │ │ a_1: ─────────┼──────┼────────■──────■────────┼──────────────── ┌──────┐ │P(π) │ │ │ │ ┌───────┐ b_0: ┤0 ├─■──────┼────────┼──────┼────────┼───────┤0 ├ │ │ │P(π/2) │P(π) │ │ │ │ b_1: ┤1 qft ├────────■────────■──────┼────────┼───────┤1 iqft ├ │ │ │P(π/2) │P(π/4) │ │ cout_0: ┤2 ├────────────────────────■────────■───────┤2 ├ └──────┘ └───────┘
References:
[1] T. G. Draper, Addition on a Quantum Computer, 2000. arXiv:quant-ph/0008033
[2] Ruiz-Perez et al., Quantum arithmetic with the Quantum Fourier Transform, 2017. arXiv:1411.5949
[3] Vedral et al., Quantum Networks for Elementary Arithmetic Operations, 1995. arXiv:quant-ph/9511018
- パラメータ:
num_state_qubits (int) – The number of qubits in either input register for state \(|a\rangle\) or \(|b\rangle\). The two input registers must have the same number of qubits.
kind (str) – The kind of adder, can be
'half'
for a half adder or'fixed'
for a fixed-sized adder. A half adder contains a carry-out to represent the most-significant bit, but the fixed-sized adder doesn’t and hence performs addition modulo2 ** num_state_qubits
.name (str) – The name of the circuit object.
- 例外:
ValueError – If
num_state_qubits
is lower than 1.
Attributes
- ancillas#
Returns a list of ancilla bits in the order that the registers were added.
- calibrations#
Return calibration dictionary.
The custom pulse definition of a given gate is of the form
{'gate_name': {(qubits, params): schedule}}
- clbits#
Returns a list of classical bits in the order that the registers were added.
- data#
Return the circuit data (instructions and context).
- 戻り値:
a list-like object containing the
CircuitInstruction
s for each instruction.- 戻り値の型:
QuantumCircuitData
- extension_lib = 'include "qelib1.inc";'#
- global_phase#
Return the global phase of the circuit in radians.
- header = 'OPENQASM 2.0;'#
- instances = 127#
- layout#
Return any associated layout information about the circuit
This attribute contains an optional
TranspileLayout
object. This is typically set on the output fromtranspile()
orPassManager.run()
to retain information about the permutations caused on the input circuit by transpilation.There are two types of permutations caused by the
transpile()
function, an initial layout which permutes the qubits based on the selected physical qubits on theTarget
, and a final layout which is an output permutation caused bySwapGate
s inserted during routing.
- metadata#
The user provided metadata associated with the circuit.
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
- num_ancillas#
Return the number of ancilla qubits.
- num_clbits#
Return number of classical bits.
- num_parameters#
The number of parameter objects in the circuit.
- num_qubits#
Return number of qubits.
- num_state_qubits#
The number of state qubits, i.e. the number of bits in each input register.
- 戻り値:
The number of state qubits.
- op_start_times#
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
- 戻り値:
List of integers representing instruction start times. The index corresponds to the index of instruction in
QuantumCircuit.data
.- 例外:
AttributeError – When circuit is not scheduled.
- parameters#
The parameters defined in the circuit.
This attribute returns the
Parameter
objects in the circuit sorted alphabetically. Note that parameters instantiated with aParameterVector
are still sorted numerically.サンプル
The snippet below shows that insertion order of parameters does not matter.
>>> from qiskit.circuit import QuantumCircuit, Parameter >>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant") >>> circuit = QuantumCircuit(1) >>> circuit.rx(b, 0) >>> circuit.rz(elephant, 0) >>> circuit.ry(a, 0) >>> circuit.parameters # sorted alphabetically! ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal 「10」 comes before 「2」 in strict alphabetical sorting.
>>> from qiskit.circuit import QuantumCircuit, Parameter >>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")] >>> circuit = QuantumCircuit(1) >>> circuit.u(*angles, 0) >>> circuit.draw() ┌─────────────────────────────┐ q: ┤ U(angle_1,angle_2,angle_10) ├ └─────────────────────────────┘ >>> circuit.parameters ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
To respect numerical sorting, a
ParameterVector
can be used.>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector >>> x = ParameterVector("x", 12) >>> circuit = QuantumCircuit(1) >>> for x_i in x: ... circuit.rx(x_i, 0) >>> circuit.parameters ParameterView([ ParameterVectorElement(x[0]), ParameterVectorElement(x[1]), ParameterVectorElement(x[2]), ParameterVectorElement(x[3]), ..., ParameterVectorElement(x[11]) ])
- 戻り値:
The sorted
Parameter
objects in the circuit.
- prefix = 'circuit'#
- qubits#
Returns a list of quantum bits in the order that the registers were added.