HamiltonianGate#

class qiskit.extensions.HamiltonianGate(data, time, label=None)[ソース]#

ベースクラス: Gate

Class for representing evolution by a Hamiltonian operator as a gate.

This gate resolves to a UnitaryGate as \(U(t) = exp(-i t H)\), which can be decomposed into basis gates if it is 2 qubits or less, or simulated directly in Aer for more qubits. Note that you can also directly use QuantumCircuit.hamiltonian().

Create a gate from a hamiltonian operator and evolution time parameter t

パラメータ:
  • data (matrix or Operator) – a hermitian operator.

  • time (float or ParameterExpression) – time evolution parameter.

  • label (str) – unitary name for backend [Default: None].

例外:

ExtensionError – if input data is not an N-qubit unitary operator.

Attributes

condition_bits#

Get Clbits in condition.

decompositions#

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition#

Return definition in terms of other basic gates.

duration#

Get the duration.

label#

Return instruction label

name#

Return the name.

num_clbits#

Return the number of clbits.

num_qubits#

Return the number of qubits.

params#

return instruction params.

unit#

Get the time unit of duration.

Methods

add_decomposition(decomposition)#

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

adjoint()[ソース]#

Return the adjoint of the unitary.

assemble()#

Assemble a QasmQobjInstruction

broadcast_arguments(qargs, cargs)#

Validation and handling of the arguments and its relationship.

For example, cx([q[0],q[1]], q[2]) means cx(q[0], q[2]); cx(q[1], q[2]). This method yields the arguments in the right grouping. In the given example:

in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
      [q[1], q[2]], []

The general broadcasting rules are:

  • If len(qargs) == 1:

    [q[0], q[1]] -> [q[0]],[q[1]]
    
  • If len(qargs) == 2:

    [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
    [[q[0]], [r[0], r[1]]]       -> [q[0], r[0]], [q[0], r[1]]
    [[q[0], q[1]], [r[0]]]       -> [q[0], r[0]], [q[1], r[0]]
    
  • If len(qargs) >= 3:

    [q[0], q[1]], [r[0], r[1]],  ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
    
パラメータ:
  • qargs (list) – List of quantum bit arguments.

  • cargs (list) – List of classical bit arguments.

戻り値:

A tuple with single arguments.

例外:

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

戻り値の型:

Iterable[tuple[list, list]]

c_if(classical, val)#

Set a classical equality condition on this instruction between the register or cbit classical and value val.

注釈

This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.

conjugate()[ソース]#

Return the conjugate of the Hamiltonian.

control(num_ctrl_qubits=1, label=None, ctrl_state=None)#

Return controlled version of gate. See ControlledGate for usage.

パラメータ:
  • num_ctrl_qubits (int) – number of controls to add to gate (default: 1)

  • label (str | None) – optional gate label

  • ctrl_state (int | str | None) – The control state in decimal or as a bitstring (e.g. '111'). If None, use 2**num_ctrl_qubits-1.

戻り値:

Controlled version of gate. This default algorithm uses num_ctrl_qubits-1 ancilla qubits so returns a gate of size num_qubits + 2*num_ctrl_qubits - 1.

戻り値の型:

qiskit.circuit.ControlledGate

例外:

QiskitError – unrecognized mode or invalid ctrl_state

copy(name=None)#

Copy of the instruction.

パラメータ:

name (str) – name to be given to the copied circuit, if None then the name stays the same.

戻り値:

a copy of the current instruction, with the name updated if it was provided

戻り値の型:

qiskit.circuit.Instruction

inverse()[ソース]#

Return the adjoint of the unitary.

is_parameterized()#

Return True .IFF. instruction is parameterized else False

power(exponent)#

Creates a unitary gate as gate^exponent.

パラメータ:

exponent (float) – Gate^exponent

戻り値:

To which to_matrix is self.to_matrix^exponent.

戻り値の型:

qiskit.extensions.UnitaryGate

例外:

CircuitError – If Gate is not unitary

qasm()[ソース]#

Raise an error, as QASM is not defined for the HamiltonianGate.

バージョン 0.25.0 で非推奨: The method qiskit.extensions.hamiltonian_gate.HamiltonianGate.qasm() is deprecated as of qiskit-terra 0.25.0. It will be removed no earlier than 3 months after the release date.

repeat(n)#

Creates an instruction with gate repeated n amount of times.

パラメータ:

n (int) – Number of times to repeat the instruction

戻り値:

Containing the definition.

戻り値の型:

qiskit.circuit.Instruction

例外:

CircuitError – If n < 1.

reverse_ops()#

For a composite instruction, reverse the order of sub-instructions.

This is done by recursively reversing all sub-instructions. It does not invert any gate.

戻り値:

a new instruction with

sub-instructions reversed.

戻り値の型:

qiskit.circuit.Instruction

soft_compare(other)#

Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.

パラメータ:

other (instruction) – other instruction.

戻り値:

are self and other equal up to parameter expressions.

戻り値の型:

bool

to_matrix()#

Return a Numpy.array for the gate unitary matrix.

戻り値:

if the Gate subclass has a matrix definition.

戻り値の型:

np.ndarray

例外:

CircuitError – If a Gate subclass does not implement this method an exception will be raised when this base class method is called.

transpose()[ソース]#

Return the transpose of the Hamiltonian.

validate_parameter(parameter)[ソース]#

Hamiltonian parameter has to be an ndarray, operator or float.