PauliList#
- class qiskit.quantum_info.PauliList(data)[ソース]#
ベースクラス:
BasePauli
,LinearMixin
,GroupMixin
List of N-qubit Pauli operators.
This class is an efficient representation of a list of
Pauli
operators. It supports 1D numpy array indexing returning aPauli
for integer indexes or aPauliList
for slice or list indices.Initialization
A PauliList object can be initialized in several ways.
For example,
import numpy as np from qiskit.quantum_info import Pauli, PauliList # 1. init from list[str] pauli_list = PauliList(["II", "+ZI", "-iYY"]) print("1. ", pauli_list) pauli1 = Pauli("iXI") pauli2 = Pauli("iZZ") # 2. init from Pauli print("2. ", PauliList(pauli1)) # 3. init from list[Pauli] print("3. ", PauliList([pauli1, pauli2])) # 4. init from np.ndarray z = np.array([[True, True], [False, False]]) x = np.array([[False, True], [True, False]]) phase = np.array([0, 1]) pauli_list = PauliList.from_symplectic(z, x, phase) print("4. ", pauli_list)
1. ['II', 'ZI', '-iYY'] 2. ['iXI'] 3. ['iXI', 'iZZ'] 4. ['YZ', '-iIX']
Data Access
The individual Paulis can be accessed and updated using the
[]
operator which accepts integer, lists, or slices for selecting subsets of PauliList. If integer is given, it returns Pauli not PauliList.pauli_list = PauliList(["XX", "ZZ", "IZ"]) print("Integer: ", repr(pauli_list[1])) print("List: ", repr(pauli_list[[0, 2]])) print("Slice: ", repr(pauli_list[0:2]))
Integer: Pauli('ZZ') List: PauliList(['XX', 'IZ']) Slice: PauliList(['XX', 'ZZ'])
Iteration
Rows in the Pauli table can be iterated over like a list. Iteration can also be done using the label or matrix representation of each row using the
label_iter()
andmatrix_iter()
methods.Initialize the PauliList.
- パラメータ:
data (Pauli or list) – input data for Paulis. If input is a list each item in the list must be a Pauli object or Pauli str.
- 例外:
QiskitError – if input array is invalid shape.
- Additional Information:
The input array is not copied so multiple Pauli tables can share the same underlying array.
Attributes
- dim#
Return tuple (input_shape, output_shape).
- num_qubits#
Return the number of qubits if a N-qubit operator or None otherwise.
- phase#
Return the phase exponent of the PauliList.
- qargs#
Return the qargs for the operator.
- settings#
Return settings.
- shape#
The full shape of the
array()
- size#
The number of Pauli rows in the table.
- x#
The x array for the symplectic representation.
- z#
The z array for the symplectic representation.
Methods
- anticommutes_with_all(other)[ソース]#
Return indexes of rows that commute other.
If
other
is a multi-row Pauli list the returned vector indexes rows of the current PauliList that anti-commute with all Paulis in other. If no rows satisfy the condition the returned array will be empty.- パラメータ:
other (PauliList) – a single Pauli or multi-row PauliList.
- 戻り値:
index array of the anti-commuting rows.
- 戻り値の型:
array
- argsort(weight=False, phase=False)[ソース]#
Return indices for sorting the rows of the table.
The default sort method is lexicographic sorting by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Pauli, where the set of all Paulis of a given weight are still ordered lexicographically.
- commutes_with_all(other)[ソース]#
Return indexes of rows that commute
other
.If
other
is a multi-row Pauli list the returned vector indexes rows of the current PauliList that commute with all Paulis in other. If no rows satisfy the condition the returned array will be empty.- パラメータ:
other (PauliList) – a single Pauli or multi-row PauliList.
- 戻り値:
index array of the commuting rows.
- 戻り値の型:
array
- compose(other, qargs=None, front=False, inplace=False)[ソース]#
Return the composition self∘other for each Pauli in the list.
- パラメータ:
- 戻り値:
the list of composed Paulis.
- 戻り値の型:
- 例外:
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list, or has the wrong number of qubits for the specified
qargs
.
- copy()#
Make a deep copy of current operator.
- delete(ind, qubit=False)[ソース]#
Return a copy with Pauli rows deleted from table.
When deleting qubits the qubit index is the same as the column index of the underlying
X
andZ
arrays.- パラメータ:
- 戻り値:
the resulting table with the entries removed.
- 戻り値の型:
- 例外:
QiskitError – if
ind
is out of bounds for the array size or number of qubits.
- dot(other, qargs=None, inplace=False)[ソース]#
Return the composition other∘self for each Pauli in the list.
- パラメータ:
- 戻り値:
the list of composed Paulis.
- 戻り値の型:
- 例外:
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list, or has the wrong number of qubits for the specified
qargs
.
- evolve(other, qargs=None, frame='h')[ソース]#
Performs either Heisenberg (default) or Schrödinger picture evolution of the Pauli by a Clifford and returns the evolved Pauli.
Schrödinger picture evolution can be chosen by passing parameter
frame='s'
. This option yields a faster calculation.Heisenberg picture evolves the Pauli as \(P^\prime = C^\dagger.P.C\).
Schrödinger picture evolves the Pauli as \(P^\prime = C.P.C^\dagger\).
- パラメータ:
other (Pauli or Clifford or QuantumCircuit) – The Clifford operator to evolve by.
qargs (list) – a list of qubits to apply the Clifford to.
frame (string) –
'h'
for Heisenberg (default) or's'
for Schrödinger framework.
- 戻り値:
the Pauli \(C^\dagger.P.C\) (Heisenberg picture) or the Pauli \(C.P.C^\dagger\) (Schrödinger picture).
- 戻り値の型:
- 例外:
QiskitError – if the Clifford number of qubits and qargs don’t match.
- expand(other)[ソース]#
Return the expand product of each Pauli in the list.
- パラメータ:
other (PauliList) – another PauliList.
- 戻り値:
the list of tensor product Paulis.
- 戻り値の型:
- 例外:
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list.
- classmethod from_symplectic(z, x, phase=0)[ソース]#
Construct a PauliList from a symplectic data.
- パラメータ:
z (np.ndarray) – 2D boolean Numpy array.
x (np.ndarray) – 2D boolean Numpy array.
phase (np.ndarray or None) – Optional, 1D integer array from Z_4.
- 戻り値:
the constructed PauliList.
- 戻り値の型:
- group_commuting(qubit_wise=False)[ソース]#
Partition a PauliList into sets of commuting Pauli strings.
- パラメータ:
qubit_wise (bool) –
whether the commutation rule is applied to the whole operator, or on a per-qubit basis. For example:
>>> from qiskit.quantum_info import PauliList >>> op = PauliList(["XX", "YY", "IZ", "ZZ"]) >>> op.group_commuting() [PauliList(['XX', 'YY']), PauliList(['IZ', 'ZZ'])] >>> op.group_commuting(qubit_wise=True) [PauliList(['XX']), PauliList(['YY']), PauliList(['IZ', 'ZZ'])]
- 戻り値:
List of PauliLists where each PauliList contains commuting Pauli operators.
- 戻り値の型:
- group_qubit_wise_commuting()[ソース]#
Partition a PauliList into sets of mutually qubit-wise commuting Pauli strings.
- input_dims(qargs=None)#
Return tuple of input dimension for specified subsystems.
- insert(ind, value, qubit=False)[ソース]#
Insert Paulis into the table.
When inserting qubits the qubit index is the same as the column index of the underlying
X
andZ
arrays.- パラメータ:
- 戻り値:
the resulting table with the entries inserted.
- 戻り値の型:
- 例外:
QiskitError – if the insertion index is invalid.
- label_iter()[ソース]#
Return a label representation iterator.
This is a lazy iterator that converts each row into the string label only as it is used. To convert the entire table to labels use the
to_labels()
method.- 戻り値:
label iterator object for the PauliList.
- 戻り値の型:
LabelIterator
- matrix_iter(sparse=False)[ソース]#
Return a matrix representation iterator.
This is a lazy iterator that converts each row into the Pauli matrix representation only as it is used. To convert the entire table to matrices use the
to_matrix()
method.- パラメータ:
sparse (bool) – optionally return sparse CSR matrices if
True
, otherwise return Numpy array matrices (Default:False
)- 戻り値:
matrix iterator object for the PauliList.
- 戻り値の型:
MatrixIterator
- output_dims(qargs=None)#
Return tuple of output dimension for specified subsystems.
- power(n)#
Return the compose of a operator with itself n times.
- パラメータ:
n (int) – the number of times to compose with self (n>0).
- 戻り値:
the n-times composed operator.
- 戻り値の型:
- 例外:
QiskitError – if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
- reshape(input_dims=None, output_dims=None, num_qubits=None)#
Return a shallow copy with reshaped input and output subsystem dimensions.
- パラメータ:
input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
- 戻り値:
returns self with reshaped input and output dimensions.
- 戻り値の型:
BaseOperator
- 例外:
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
- sort(weight=False, phase=False)[ソース]#
Sort the rows of the table.
The default sort method is lexicographic sorting by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Pauli, where the set of all Paulis of a given weight are still ordered lexicographically.
Example
Consider sorting all a random ordering of all 2-qubit Paulis
from numpy.random import shuffle from qiskit.quantum_info.operators import PauliList # 2-qubit labels labels = ['II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ', 'YI', 'YX', 'YY', 'YZ', 'ZI', 'ZX', 'ZY', 'ZZ'] # Shuffle Labels shuffle(labels) pt = PauliList(labels) print('Initial Ordering') print(pt) # Lexicographic Ordering srt = pt.sort() print('Lexicographically sorted') print(srt) # Weight Ordering srt = pt.sort(weight=True) print('Weight sorted') print(srt)
Initial Ordering ['YX', 'ZZ', 'XZ', 'YI', 'YZ', 'II', 'XX', 'XI', 'XY', 'YY', 'IX', 'IZ', 'ZY', 'ZI', 'ZX', 'IY'] Lexicographically sorted ['II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ', 'YI', 'YX', 'YY', 'YZ', 'ZI', 'ZX', 'ZY', 'ZZ'] Weight sorted ['II', 'IX', 'IY', 'IZ', 'XI', 'YI', 'ZI', 'XX', 'XY', 'XZ', 'YX', 'YY', 'YZ', 'ZX', 'ZY', 'ZZ']
- tensor(other)[ソース]#
Return the tensor product with each Pauli in the list.
- パラメータ:
other (PauliList) – another PauliList.
- 戻り値:
the list of tensor product Paulis.
- 戻り値の型:
- 例外:
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list.
- to_labels(array=False)[ソース]#
Convert a PauliList to a list Pauli string labels.
For large PauliLists converting using the
array=True
kwarg will be more efficient since it allocates memory for the full Numpy array of labels in advance.Table 3 Pauli Representations# Label
Symplectic
Matrix
"I"
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
"X"
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
"Y"
\([1, 1]\)
\(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\)
"Z"
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
- to_matrix(sparse=False, array=False)[ソース]#
Convert to a list or array of Pauli matrices.
For large PauliLists converting using the
array=True
kwarg will be more efficient since it allocates memory a full rank-3 Numpy array of matrices in advance.Table 4 Pauli Representations# Label
Symplectic
Matrix
"I"
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
"X"
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
"Y"
\([1, 1]\)
\(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\)
"Z"
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
- パラメータ:
- 戻り値:
A list of dense Pauli matrices if
array=False` and ``sparse=False`. list: A list of sparse Pauli matrices if ``array=False
andsparse=True
. array: A dense rank-3 array of Pauli matrices ifarray=True
.- 戻り値の型:
- unique(return_index=False, return_counts=False)[ソース]#
Return unique Paulis from the table.
Example
from qiskit.quantum_info.operators import PauliList pt = PauliList(['X', 'Y', '-X', 'I', 'I', 'Z', 'X', 'iZ']) unique = pt.unique() print(unique)
['X', 'Y', '-X', 'I', 'Z', 'iZ']
- パラメータ:
- 戻り値:
- unique
the table of the unique rows.
- unique_indices: np.ndarray, optional
The indices of the first occurrences of the unique values in the original array. Only provided if
return_index
isTrue
.- unique_counts: np.array, optional
The number of times each of the unique values comes up in the original array. Only provided if
return_counts
isTrue
.
- 戻り値の型: