Operator#

class qiskit.quantum_info.Operator(data, input_dims=None, output_dims=None)[ソース]#

ベースクラス: LinearOp

Matrix operator class

This represents a matrix operator \(M\) that will evolve() a Statevector \(|\psi\rangle\) by matrix-vector multiplication

\[|\psi\rangle \mapsto M|\psi\rangle,\]

and will evolve() a DensityMatrix \(\rho\) by left and right multiplication

\[\rho \mapsto M \rho M^\dagger.\]

Initialize an operator object.

パラメータ:
  • data (QuantumCircuit or Operation or BaseOperator or matrix) – data to initialize operator.

  • input_dims (tuple) – the input subsystem dimensions. [Default: None]

  • output_dims (tuple) – the output subsystem dimensions. [Default: None]

例外:

QiskitError – if input data cannot be initialized as an operator.

Additional Information:

If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a Numpy array of shape (2**N, 2**N) qubit systems will be used. If the input operator is not an N-qubit operator, it will assign a single subsystem with dimension specified by the shape of the input.

Attributes

atol = 1e-08#
data#

The underlying Numpy array.

dim#

Return tuple (input_shape, output_shape).

num_qubits#

Return the number of qubits if a N-qubit operator or None otherwise.

qargs#

Return the qargs for the operator.

rtol = 1e-05#
settings#

Return operator settings.

Methods

adjoint()#

Return the adjoint of the Operator.

戻り値の型:

Self

apply_permutation(perm, front=False)[ソース]#

Modifies operator’s data by composing it with a permutation.

パラメータ:
  • perm (list) – permutation pattern, describing which qubits occupy the positions 0, 1, 2, etc. after applying the permutation.

  • front (bool) – When set to True the permutation is applied before the operator, when set to False the permutation is applied after the operator.

戻り値:

The modified operator.

戻り値の型:

Operator

例外:

QiskitError – if the size of the permutation pattern does not match the dimensions of the operator.

compose(other, qargs=None, front=False)[ソース]#

Return the operator composition with another Operator.

パラメータ:
  • other (Operator) – a Operator object.

  • qargs (list or None) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).

  • front (bool) – If True compose using right operator multiplication, instead of left multiplication [default: False].

戻り値:

The composed Operator.

戻り値の型:

Operator

例外:

QiskitError – if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.

注釈

Composition (&) by default is defined as left matrix multiplication for matrix operators, while @ (equivalent to dot()) is defined as right matrix multiplication. That is that A & B == A.compose(B) is equivalent to B @ A == B.dot(A) when A and B are of the same type.

Setting the front=True kwarg changes this to right matrix multiplication and is equivalent to the dot() method A.dot(B) == A.compose(B, front=True).

conjugate()[ソース]#

Return the conjugate of the Operator.

copy()#

Make a deep copy of current operator.

dot(other, qargs=None)#

Return the right multiplied operator self * other.

パラメータ:
  • other (Operator) – an operator object.

  • qargs (list or None) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).

戻り値:

The right matrix multiplied Operator.

戻り値の型:

Operator

注釈

The dot product can be obtained using the @ binary operator. Hence a.dot(b) is equivalent to a @ b.

equiv(other, rtol=None, atol=None)[ソース]#

Return True if operators are equivalent up to global phase.

パラメータ:
  • other (Operator) – an operator object.

  • rtol (float) – relative tolerance value for comparison.

  • atol (float) – absolute tolerance value for comparison.

戻り値:

True if operators are equivalent up to global phase.

戻り値の型:

bool

expand(other)[ソース]#

Return the reverse-order tensor product with another Operator.

パラメータ:

other (Operator) – a Operator object.

戻り値:

the tensor product \(b \otimes a\), where \(a\)

is the current Operator, and \(b\) is the other Operator.

戻り値の型:

Operator

classmethod from_circuit(circuit, ignore_set_layout=False, layout=None, final_layout=None)[ソース]#

Create a new Operator object from a QuantumCircuit

While a QuantumCircuit object can passed directly as data to the class constructor this provides no options on how the circuit is used to create an Operator. This constructor method lets you control how the Operator is created so it can be adjusted for a particular use case.

By default this constructor method will permute the qubits based on a configured initial layout (i.e. after it was transpiled). It also provides an option to manually provide a Layout object directly.

パラメータ:
  • circuit (QuantumCircuit) – The QuantumCircuit to create an Operator object from.

  • ignore_set_layout (bool) – When set to True if the input circuit has a layout set it will be ignored

  • layout (Layout) – If specified this kwarg can be used to specify a particular layout to use to permute the qubits in the created Operator. If this is specified it will be used instead of a layout contained in the circuit input. If specified the virtual bits in the Layout must be present in the circuit input.

  • final_layout (Layout) – If specified this kwarg can be used to represent the output permutation caused by swap insertions during the routing stage of the transpiler.

戻り値:

An operator representing the input circuit

戻り値の型:

Operator

classmethod from_label(label)[ソース]#

Return a tensor product of single-qubit operators.

パラメータ:

label (string) – single-qubit operator string.

戻り値:

The N-qubit operator.

戻り値の型:

Operator

例外:

QiskitError – if the label contains invalid characters, or the length of the label is larger than an explicitly specified num_qubits.

Additional Information:

The labels correspond to the single-qubit matrices: 『I』: [[1, 0], [0, 1]] 『X』: [[0, 1], [1, 0]] 『Y』: [[0, -1j], [1j, 0]] 『Z』: [[1, 0], [0, -1]] 『H』: [[1, 1], [1, -1]] / sqrt(2) 『S』: [[1, 0], [0 , 1j]] 『T』: [[1, 0], [0, (1+1j) / sqrt(2)]] 『0』: [[1, 0], [0, 0]] 『1』: [[0, 0], [0, 1]] 『+』: [[0.5, 0.5], [0.5 , 0.5]] 『-』: [[0.5, -0.5], [-0.5 , 0.5]] 『r』: [[0.5, -0.5j], [0.5j , 0.5]] 『l』: [[0.5, 0.5j], [-0.5j , 0.5]]

input_dims(qargs=None)#

Return tuple of input dimension for specified subsystems.

is_unitary(atol=None, rtol=None)[ソース]#

Return True if operator is a unitary matrix.

output_dims(qargs=None)#

Return tuple of output dimension for specified subsystems.

power(n)[ソース]#

Return the matrix power of the operator.

パラメータ:

n (float) – the power to raise the matrix to.

戻り値:

the resulting operator O ** n.

戻り値の型:

Operator

例外:

QiskitError – if the input and output dimensions of the operator are not equal.

reshape(input_dims=None, output_dims=None, num_qubits=None)#

Return a shallow copy with reshaped input and output subsystem dimensions.

パラメータ:
  • input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].

  • output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].

  • num_qubits (None or int) – reshape to an N-qubit operator [Default: None].

戻り値:

returns self with reshaped input and output dimensions.

戻り値の型:

BaseOperator

例外:

QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.

reverse_qargs()[ソース]#

Return an Operator with reversed subsystem ordering.

For a tensor product operator this is equivalent to reversing the order of tensor product subsystems. For an operator \(A = A_{n-1} \otimes ... \otimes A_0\) the returned operator will be \(A_0 \otimes ... \otimes A_{n-1}\).

戻り値:

the operator with reversed subsystem order.

戻り値の型:

Operator

tensor(other)[ソース]#

Return the tensor product with another Operator.

パラメータ:

other (Operator) – a Operator object.

戻り値:

the tensor product \(a \otimes b\), where \(a\)

is the current Operator, and \(b\) is the other Operator.

戻り値の型:

Operator

注釈

The tensor product can be obtained using the ^ binary operator. Hence a.tensor(b) is equivalent to a ^ b.

to_instruction()[ソース]#

Convert to a UnitaryGate instruction.

to_matrix()[ソース]#

Convert operator to NumPy matrix.

to_operator()[ソース]#

Convert operator to matrix operator class

戻り値の型:

Operator

transpose()[ソース]#

Return the transpose of the Operator.