RYYGate#

class qiskit.circuit.library.RYYGate(theta, label=None)[source]#

Bases : Gate

A parametric 2-qubit \(Y \otimes Y\) interaction (rotation about YY).

This gate is symmetric, and is maximally entangling at \(\theta = \pi/2\).

Can be applied to a QuantumCircuit with the ryy() method.

Circuit Symbol:

     ┌─────────┐
q_0: ─1        ├
     │  Ryy(ÏŽ) │
q_1: ─0        ├
     └─────────┘

Matrix Representation:

\[ \begin{align}\begin{aligned}\newcommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{YY}(\theta) = \exp\left(-i \th Y{\otimes}Y\right) = \begin{pmatrix} \cos\left(\th\right) & 0 & 0 & i\sin\left(\th\right) \\ 0 & \cos\left(\th\right) & -i\sin\left(\th\right) & 0 \\ 0 & -i\sin\left(\th\right) & \cos\left(\th\right) & 0 \\ i\sin\left(\th\right) & 0 & 0 & \cos\left(\th\right) \end{pmatrix}\end{split}\end{aligned}\end{align} \]

Examples:

\[R_{YY}(\theta = 0) = I\]
\[R_{YY}(\theta = \pi) = i Y \otimes Y\]
\[\begin{split}R_{YY}\left(\theta = \frac{\pi}{2}\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & -i & 0 \\ 0 & -i & 1 & 0 \\ i & 0 & 0 & 1 \end{pmatrix}\end{split}\]

Create new RYY gate.

Attributes

condition_bits#

Get Clbits in condition.

decompositions#

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition#

Return definition in terms of other basic gates.

duration#

Get the duration.

label#

Return instruction label

name#

Return the name.

num_clbits#

Return the number of clbits.

num_qubits#

Return the number of qubits.

params#

return instruction params.

unit#

Get the time unit of duration.

Methods

inverse()[source]#

Return inverse RYY gate (i.e. with the negative rotation angle).

power(exponent)[source]#

Raise gate to a power.