RZZGate#
- class qiskit.circuit.library.RZZGate(theta, label=None)[source]#
Bases :
Gate
A parametric 2-qubit \(Z \otimes Z\) interaction (rotation about ZZ).
This gate is symmetric, and is maximally entangling at \(\theta = \pi/2\).
Can be applied to a
QuantumCircuit
with therzz()
method.Circuit Symbol:
q_0: ───■──── │zz(θ) q_1: ───■────
Matrix Representation:
\[ \begin{align}\begin{aligned}\newcommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{ZZ}(\theta) = \exp\left(-i \th Z{\otimes}Z\right) = \begin{pmatrix} e^{-i \th} & 0 & 0 & 0 \\ 0 & e^{i \th} & 0 & 0 \\ 0 & 0 & e^{i \th} & 0 \\ 0 & 0 & 0 & e^{-i \th} \end{pmatrix}\end{split}\end{aligned}\end{align} \]This is a direct sum of RZ rotations, so this gate is equivalent to a uniformly controlled (multiplexed) RZ gate:
\[\begin{split}R_{ZZ}(\theta) = \begin{pmatrix} RZ(\theta) & 0 \\ 0 & RZ(-\theta) \end{pmatrix}\end{split}\]Examples:
\[R_{ZZ}(\theta = 0) = I\]\[R_{ZZ}(\theta = 2\pi) = -I\]\[R_{ZZ}(\theta = \pi) = - Z \otimes Z\]\[\begin{split}R_{ZZ}\left(\theta = \frac{\pi}{2}\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1-i & 0 & 0 & 0 \\ 0 & 1+i & 0 & 0 \\ 0 & 0 & 1+i & 0 \\ 0 & 0 & 0 & 1-i \end{pmatrix}\end{split}\]Create new RZZ gate.
Attributes
- condition_bits#
Get Clbits in condition.
- decompositions#
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
- definition#
Return definition in terms of other basic gates.
- duration#
Get the duration.
- label#
Return instruction label
- name#
Return the name.
- num_clbits#
Return the number of clbits.
- num_qubits#
Return the number of qubits.
- params#
return instruction params.
- unit#
Get the time unit of duration.
Methods