Code source de qiskit.circuit.library.standard_gates.rzz

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Two-qubit ZZ-rotation gate."""
from cmath import exp
from typing import Optional
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.circuit.parameterexpression import ParameterValueType


[docs]class RZZGate(Gate): r"""A parametric 2-qubit :math:`Z \otimes Z` interaction (rotation about ZZ). This gate is symmetric, and is maximally entangling at :math:`\theta = \pi/2`. Can be applied to a :class:`~qiskit.circuit.QuantumCircuit` with the :meth:`~qiskit.circuit.QuantumCircuit.rzz` method. **Circuit Symbol:** .. parsed-literal:: q_0: ───■──── β”‚zz(ΞΈ) q_1: ───■──── **Matrix Representation:** .. math:: \newcommand{\th}{\frac{\theta}{2}} R_{ZZ}(\theta) = \exp\left(-i \th Z{\otimes}Z\right) = \begin{pmatrix} e^{-i \th} & 0 & 0 & 0 \\ 0 & e^{i \th} & 0 & 0 \\ 0 & 0 & e^{i \th} & 0 \\ 0 & 0 & 0 & e^{-i \th} \end{pmatrix} This is a direct sum of RZ rotations, so this gate is equivalent to a uniformly controlled (multiplexed) RZ gate: .. math:: R_{ZZ}(\theta) = \begin{pmatrix} RZ(\theta) & 0 \\ 0 & RZ(-\theta) \end{pmatrix} **Examples:** .. math:: R_{ZZ}(\theta = 0) = I .. math:: R_{ZZ}(\theta = 2\pi) = -I .. math:: R_{ZZ}(\theta = \pi) = - Z \otimes Z .. math:: R_{ZZ}\left(\theta = \frac{\pi}{2}\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1-i & 0 & 0 & 0 \\ 0 & 1+i & 0 & 0 \\ 0 & 0 & 1+i & 0 \\ 0 & 0 & 0 & 1-i \end{pmatrix} """ def __init__(self, theta: ParameterValueType, label: Optional[str] = None): """Create new RZZ gate.""" super().__init__("rzz", 2, [theta], label=label) def _define(self): """ gate rzz(theta) a, b { cx a, b; u1(theta) b; cx a, b; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .x import CXGate from .rz import RZGate # q_0: ──■─────────────■── # β”Œβ”€β”΄β”€β”β”Œβ”€β”€β”€β”€β”€β”€β”€β”β”Œβ”€β”΄β”€β” # q_1: ─ X β”œβ”€ Rz(0) β”œβ”€ X β”œ # β””β”€β”€β”€β”˜β””β”€β”€β”€β”€β”€β”€β”€β”˜β””β”€β”€β”€β”˜ q = QuantumRegister(2, "q") theta = self.params[0] qc = QuantumCircuit(q, name=self.name) rules = [ (CXGate(), [q[0], q[1]], []), (RZGate(theta), [q[1]], []), (CXGate(), [q[0], q[1]], []), ] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[docs] def inverse(self): """Return inverse RZZ gate (i.e. with the negative rotation angle).""" return RZZGate(-self.params[0])
def __array__(self, dtype=None): """Return a numpy.array for the RZZ gate.""" import numpy itheta2 = 1j * float(self.params[0]) / 2 return numpy.array( [ [exp(-itheta2), 0, 0, 0], [0, exp(itheta2), 0, 0], [0, 0, exp(itheta2), 0], [0, 0, 0, exp(-itheta2)], ], dtype=dtype, )
[docs] def power(self, exponent: float): """Raise gate to a power.""" (theta,) = self.params return RZZGate(exponent * theta)