qiskit.quantum_info.operators.channel.choi のソースコード

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.


"""
Choi-matrix representation of a Quantum Channel.
"""

from __future__ import annotations
import copy
import numpy as np

from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.instruction import Instruction
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.channel.quantum_channel import QuantumChannel
from qiskit.quantum_info.operators.op_shape import OpShape
from qiskit.quantum_info.operators.channel.superop import SuperOp
from qiskit.quantum_info.operators.channel.transformations import _to_choi
from qiskit.quantum_info.operators.channel.transformations import _bipartite_tensor
from qiskit.quantum_info.operators.mixins import generate_apidocs
from qiskit.quantum_info.operators.base_operator import BaseOperator


[ドキュメント]class Choi(QuantumChannel): r"""Choi-matrix representation of a Quantum Channel. The Choi-matrix representation of a quantum channel :math:`\mathcal{E}` is a matrix .. math:: \Lambda = \sum_{i,j} |i\rangle\!\langle j|\otimes \mathcal{E}\left(|i\rangle\!\langle j|\right) Evolution of a :class:`~qiskit.quantum_info.DensityMatrix` :math:`\rho` with respect to the Choi-matrix is given by .. math:: \mathcal{E}(\rho) = \mbox{Tr}_{1}\left[\Lambda (\rho^T \otimes \mathbb{I})\right] where :math:`\mbox{Tr}_1` is the :func:`partial_trace` over subsystem 1. See reference [1] for further details. References: 1. C.J. Wood, J.D. Biamonte, D.G. Cory, *Tensor networks and graphical calculus for open quantum systems*, Quant. Inf. Comp. 15, 0579-0811 (2015). `arXiv:1111.6950 [quant-ph] <https://arxiv.org/abs/1111.6950>`_ """ def __init__( self, data: QuantumCircuit | Instruction | BaseOperator | np.ndarray, input_dims: int | tuple | None = None, output_dims: int | tuple | None = None, ): """Initialize a quantum channel Choi matrix operator. Args: data (QuantumCircuit or Instruction or BaseOperator or matrix): data to initialize superoperator. input_dims (tuple): the input subsystem dimensions. [Default: None] output_dims (tuple): the output subsystem dimensions. [Default: None] Raises: QiskitError: if input data cannot be initialized as a Choi matrix. Additional Information: If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a Numpy array of shape (4**N, 4**N) qubit systems will be used. If the input operator is not an N-qubit operator, it will assign a single subsystem with dimension specified by the shape of the input. """ # If the input is a raw list or matrix we assume that it is # already a Choi matrix. if isinstance(data, (list, np.ndarray)): # Initialize from raw numpy or list matrix. choi_mat = np.asarray(data, dtype=complex) # Determine input and output dimensions dim_l, dim_r = choi_mat.shape if dim_l != dim_r: raise QiskitError("Invalid Choi-matrix input.") if input_dims: input_dim = np.prod(input_dims) if output_dims: output_dim = np.prod(output_dims) if output_dims is None and input_dims is None: output_dim = int(np.sqrt(dim_l)) input_dim = dim_l // output_dim elif input_dims is None: input_dim = dim_l // output_dim elif output_dims is None: output_dim = dim_l // input_dim # Check dimensions if input_dim * output_dim != dim_l: raise QiskitError("Invalid shape for input Choi-matrix.") op_shape = OpShape.auto( dims_l=output_dims, dims_r=input_dims, shape=(output_dim, input_dim) ) else: # Otherwise we initialize by conversion from another Qiskit # object into the QuantumChannel. if isinstance(data, (QuantumCircuit, Instruction)): # If the input is a Terra QuantumCircuit or Instruction we # convert it to a SuperOp data = SuperOp._init_instruction(data) else: # We use the QuantumChannel init transform to initialize # other objects into a QuantumChannel or Operator object. data = self._init_transformer(data) op_shape = data._op_shape output_dim, input_dim = op_shape.shape # Now that the input is an operator we convert it to a Choi object rep = getattr(data, "_channel_rep", "Operator") choi_mat = _to_choi(rep, data._data, input_dim, output_dim) super().__init__(choi_mat, op_shape=op_shape) def __array__(self, dtype=None): if dtype: return np.asarray(self.data, dtype=dtype) return self.data @property def _bipartite_shape(self): """Return the shape for bipartite matrix""" return (self._input_dim, self._output_dim, self._input_dim, self._output_dim) def _evolve(self, state, qargs=None): return SuperOp(self)._evolve(state, qargs) # --------------------------------------------------------------------- # BaseOperator methods # ---------------------------------------------------------------------
[ドキュメント] def conjugate(self): ret = copy.copy(self) ret._data = np.conj(self._data) return ret
[ドキュメント] def transpose(self): ret = copy.copy(self) ret._op_shape = self._op_shape.transpose() # Make bipartite matrix d_in, d_out = self.dim data = np.reshape(self._data, (d_in, d_out, d_in, d_out)) # Swap input and output indices on bipartite matrix data = np.transpose(data, (1, 0, 3, 2)) ret._data = np.reshape(data, (d_in * d_out, d_in * d_out)) return ret
[ドキュメント] def compose(self, other: Choi, qargs: list | None = None, front: bool = False) -> Choi: if qargs is None: qargs = getattr(other, "qargs", None) if qargs is not None: return Choi(SuperOp(self).compose(other, qargs=qargs, front=front)) if not isinstance(other, Choi): other = Choi(other) new_shape = self._op_shape.compose(other._op_shape, qargs, front) output_dim, input_dim = new_shape.shape if front: first = np.reshape(other._data, other._bipartite_shape) second = np.reshape(self._data, self._bipartite_shape) else: first = np.reshape(self._data, self._bipartite_shape) second = np.reshape(other._data, other._bipartite_shape) # Contract Choi matrices for composition data = np.reshape( np.einsum("iAjB,AkBl->ikjl", first, second), (input_dim * output_dim, input_dim * output_dim), ) ret = Choi(data) ret._op_shape = new_shape return ret
[ドキュメント] def tensor(self, other: Choi) -> Choi: if not isinstance(other, Choi): other = Choi(other) return self._tensor(self, other)
[ドキュメント] def expand(self, other: Choi) -> Choi: if not isinstance(other, Choi): other = Choi(other) return self._tensor(other, self)
@classmethod def _tensor(cls, a, b): ret = copy.copy(a) ret._op_shape = a._op_shape.tensor(b._op_shape) ret._data = _bipartite_tensor( a._data, b.data, shape1=a._bipartite_shape, shape2=b._bipartite_shape ) return ret
# Update docstrings for API docs generate_apidocs(Choi)