Quellcode für qiskit.quantum_info.states.statevector

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
Statevector quantum state class.
"""
from __future__ import annotations
import copy
import re
from numbers import Number

import numpy as np

from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.instruction import Instruction
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.states.quantum_state import QuantumState
from qiskit.quantum_info.operators.mixins.tolerances import TolerancesMixin
from qiskit.quantum_info.operators.operator import Operator, BaseOperator
from qiskit.quantum_info.operators.symplectic import Pauli, SparsePauliOp
from qiskit.quantum_info.operators.op_shape import OpShape
from qiskit.quantum_info.operators.predicates import matrix_equal

from qiskit._accelerate.pauli_expval import (
    expval_pauli_no_x,
    expval_pauli_with_x,
)


[Doku]class Statevector(QuantumState, TolerancesMixin): """Statevector class""" def __init__( self, data: np.ndarray | list | Statevector | Operator | QuantumCircuit | Instruction, dims: int | tuple | list | None = None, ): """Initialize a statevector object. Args: data (np.array or list or Statevector or Operator or QuantumCircuit or qiskit.circuit.Instruction): Data from which the statevector can be constructed. This can be either a complex vector, another statevector, a ``Operator`` with only one column or a ``QuantumCircuit`` or ``Instruction``. If the data is a circuit or instruction, the statevector is constructed by assuming that all qubits are initialized to the zero state. dims (int or tuple or list): Optional. The subsystem dimension of the state (See additional information). Raises: QiskitError: if input data is not valid. Additional Information: The ``dims`` kwarg can be None, an integer, or an iterable of integers. * ``Iterable`` -- the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list. * ``Int`` or ``None`` -- the length of the input vector specifies the total dimension of the density matrix. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem. """ if isinstance(data, (list, np.ndarray)): # Finally we check if the input is a raw vector in either a # python list or numpy array format. self._data = np.asarray(data, dtype=complex) elif isinstance(data, Statevector): self._data = data._data if dims is None: dims = data._op_shape._dims_l elif isinstance(data, Operator): # We allow conversion of column-vector operators to Statevectors input_dim, _ = data.dim if input_dim != 1: raise QiskitError("Input Operator is not a column-vector.") self._data = np.ravel(data.data) elif isinstance(data, (QuantumCircuit, Instruction)): self._data = Statevector.from_instruction(data).data else: raise QiskitError("Invalid input data format for Statevector") # Check that the input is a numpy vector or column-vector numpy # matrix. If it is a column-vector matrix reshape to a vector. ndim = self._data.ndim shape = self._data.shape if ndim != 1: if ndim == 2 and shape[1] == 1: self._data = np.reshape(self._data, shape[0]) shape = self._data.shape elif ndim != 2 or shape[1] != 1: raise QiskitError("Invalid input: not a vector or column-vector.") super().__init__(op_shape=OpShape.auto(shape=shape, dims_l=dims, num_qubits_r=0)) def __array__(self, dtype=None): if dtype: return np.asarray(self.data, dtype=dtype) return self.data def __eq__(self, other): return super().__eq__(other) and np.allclose( self._data, other._data, rtol=self.rtol, atol=self.atol ) def __repr__(self): prefix = "Statevector(" pad = len(prefix) * " " return "{}{},\n{}dims={})".format( prefix, np.array2string(self._data, separator=", ", prefix=prefix), pad, self._op_shape.dims_l(), ) @property def settings(self) -> dict: """Return settings.""" return {"data": self._data, "dims": self._op_shape.dims_l()}
[Doku] def draw(self, output: str | None = None, **drawer_args): """Return a visualization of the Statevector. **repr**: ASCII TextMatrix of the state's ``__repr__``. **text**: ASCII TextMatrix that can be printed in the console. **latex**: An IPython Latex object for displaying in Jupyter Notebooks. **latex_source**: Raw, uncompiled ASCII source to generate array using LaTeX. **qsphere**: Matplotlib figure, rendering of statevector using `plot_state_qsphere()`. **hinton**: Matplotlib figure, rendering of statevector using `plot_state_hinton()`. **bloch**: Matplotlib figure, rendering of statevector using `plot_bloch_multivector()`. **city**: Matplotlib figure, rendering of statevector using `plot_state_city()`. **paulivec**: Matplotlib figure, rendering of statevector using `plot_state_paulivec()`. Args: output (str): Select the output method to use for drawing the state. Valid choices are `repr`, `text`, `latex`, `latex_source`, `qsphere`, `hinton`, `bloch`, `city`, or `paulivec`. Default is `repr`. Default can be changed by adding the line ``state_drawer = <default>`` to ``~/.qiskit/settings.conf`` under ``[default]``. drawer_args: Arguments to be passed directly to the relevant drawing function or constructor (`TextMatrix()`, `array_to_latex()`, `plot_state_qsphere()`, `plot_state_hinton()` or `plot_bloch_multivector()`). See the relevant function under `qiskit.visualization` for that function's documentation. Returns: :class:`matplotlib.Figure` or :class:`str` or :class:`TextMatrix` or :class:`IPython.display.Latex`: Drawing of the Statevector. Raises: ValueError: when an invalid output method is selected. Examples: Plot one of the Bell states .. plot:: :include-source: from numpy import sqrt from qiskit.quantum_info import Statevector sv=Statevector([1/sqrt(2), 0, 0, -1/sqrt(2)]) sv.draw(output='hinton') """ # pylint: disable=cyclic-import from qiskit.visualization.state_visualization import state_drawer return state_drawer(self, output=output, **drawer_args)
def _ipython_display_(self): out = self.draw() if isinstance(out, str): print(out) else: from IPython.display import display display(out) def __getitem__(self, key: int | str) -> np.complex128: """Return Statevector item either by index or binary label Args: key (int or str): index or corresponding binary label, e.g. '01' = 1. Returns: numpy.complex128: Statevector item. Raises: QiskitError: if key is not valid. """ if isinstance(key, str): try: key = int(key, 2) except ValueError: raise QiskitError(f"Key '{key}' is not a valid binary string.") from None if isinstance(key, int): if key >= self.dim: raise QiskitError(f"Key {key} is greater than Statevector dimension {self.dim}.") if key < 0: raise QiskitError(f"Key {key} is not a valid positive value.") return self._data[key] else: raise QiskitError("Key must be int or a valid binary string.") def __iter__(self): yield from self._data def __len__(self): return len(self._data) @property def data(self) -> np.ndarray: """Return data.""" return self._data
[Doku] def is_valid(self, atol: float | None = None, rtol: float | None = None) -> bool: """Return True if a Statevector has norm 1.""" if atol is None: atol = self.atol if rtol is None: rtol = self.rtol norm = np.linalg.norm(self.data) return np.allclose(norm, 1, rtol=rtol, atol=atol)
[Doku] def to_operator(self) -> Operator: """Convert state to a rank-1 projector operator""" mat = np.outer(self.data, np.conj(self.data)) return Operator(mat, input_dims=self.dims(), output_dims=self.dims())
[Doku] def conjugate(self) -> Statevector: """Return the conjugate of the operator.""" return Statevector(np.conj(self.data), dims=self.dims())
[Doku] def trace(self) -> np.float64: """Return the trace of the quantum state as a density matrix.""" return np.sum(np.abs(self.data) ** 2)
[Doku] def purity(self) -> np.float64: """Return the purity of the quantum state.""" # For a valid statevector the purity is always 1, however if we simply # have an arbitrary vector (not correctly normalized) then the # purity is equivalent to the trace squared: # P(|psi>) = Tr[|psi><psi|psi><psi|] = |<psi|psi>|^2 return self.trace() ** 2
[Doku] def tensor(self, other: Statevector) -> Statevector: """Return the tensor product state self ⊗ other. Args: other (Statevector): a quantum state object. Returns: Statevector: the tensor product operator self ⊗ other. Raises: QiskitError: if other is not a quantum state. """ if not isinstance(other, Statevector): other = Statevector(other) ret = copy.copy(self) ret._op_shape = self._op_shape.tensor(other._op_shape) ret._data = np.kron(self._data, other._data) return ret
[Doku] def inner(self, other: Statevector) -> np.complex128: r"""Return the inner product of self and other as :math:`\langle self| other \rangle`. Args: other (Statevector): a quantum state object. Returns: np.complex128: the inner product of self and other, :math:`\langle self| other \rangle`. Raises: QiskitError: if other is not a quantum state or has different dimension. """ if not isinstance(other, Statevector): other = Statevector(other) if self.dims() != other.dims(): raise QiskitError( f"Statevector dimensions do not match: {self.dims()} and {other.dims()}." ) inner = np.vdot(self.data, other.data) return inner
[Doku] def expand(self, other: Statevector) -> Statevector: """Return the tensor product state other ⊗ self. Args: other (Statevector): a quantum state object. Returns: Statevector: the tensor product state other ⊗ self. Raises: QiskitError: if other is not a quantum state. """ if not isinstance(other, Statevector): other = Statevector(other) ret = copy.copy(self) ret._op_shape = self._op_shape.expand(other._op_shape) ret._data = np.kron(other._data, self._data) return ret
def _add(self, other): """Return the linear combination self + other. Args: other (Statevector): a quantum state object. Returns: Statevector: the linear combination self + other. Raises: QiskitError: if other is not a quantum state, or has incompatible dimensions. """ if not isinstance(other, Statevector): other = Statevector(other) self._op_shape._validate_add(other._op_shape) ret = copy.copy(self) ret._data = self.data + other.data return ret def _multiply(self, other): """Return the scalar multiplied state self * other. Args: other (complex): a complex number. Returns: Statevector: the scalar multiplied state other * self. Raises: QiskitError: if other is not a valid complex number. """ if not isinstance(other, Number): raise QiskitError("other is not a number") ret = copy.copy(self) ret._data = other * self.data return ret
[Doku] def evolve( self, other: Operator | QuantumCircuit | Instruction, qargs: list[int] | None = None ) -> Statevector: """Evolve a quantum state by the operator. Args: other (Operator | QuantumCircuit | circuit.Instruction): The operator to evolve by. qargs (list): a list of Statevector subsystem positions to apply the operator on. Returns: Statevector: the output quantum state. Raises: QiskitError: if the operator dimension does not match the specified Statevector subsystem dimensions. """ if qargs is None: qargs = getattr(other, "qargs", None) # Get return vector ret = copy.copy(self) # Evolution by a circuit or instruction if isinstance(other, QuantumCircuit): other = other.to_instruction() if isinstance(other, Instruction): if self.num_qubits is None: raise QiskitError("Cannot apply QuantumCircuit to non-qubit Statevector.") return self._evolve_instruction(ret, other, qargs=qargs) # Evolution by an Operator if not isinstance(other, Operator): dims = self.dims(qargs=qargs) other = Operator(other, input_dims=dims, output_dims=dims) # check dimension if self.dims(qargs) != other.input_dims(): raise QiskitError( "Operator input dimensions are not equal to statevector subsystem dimensions." ) return Statevector._evolve_operator(ret, other, qargs=qargs)
[Doku] def equiv( self, other: Statevector, rtol: float | None = None, atol: float | None = None ) -> bool: """Return True if other is equivalent as a statevector up to global phase. .. note:: If other is not a Statevector, but can be used to initialize a statevector object, this will check that Statevector(other) is equivalent to the current statevector up to global phase. Args: other (Statevector): an object from which a ``Statevector`` can be constructed. rtol (float): relative tolerance value for comparison. atol (float): absolute tolerance value for comparison. Returns: bool: True if statevectors are equivalent up to global phase. """ if not isinstance(other, Statevector): try: other = Statevector(other) except QiskitError: return False if self.dim != other.dim: return False if atol is None: atol = self.atol if rtol is None: rtol = self.rtol return matrix_equal(self.data, other.data, ignore_phase=True, rtol=rtol, atol=atol)
[Doku] def reverse_qargs(self) -> Statevector: r"""Return a Statevector with reversed subsystem ordering. For a tensor product state this is equivalent to reversing the order of tensor product subsystems. For a statevector :math:`|\psi \rangle = |\psi_{n-1} \rangle \otimes ... \otimes |\psi_0 \rangle` the returned statevector will be :math:`|\psi_{0} \rangle \otimes ... \otimes |\psi_{n-1} \rangle`. Returns: Statevector: the Statevector with reversed subsystem order. """ ret = copy.copy(self) axes = tuple(range(self._op_shape._num_qargs_l - 1, -1, -1)) ret._data = np.reshape( np.transpose(np.reshape(self.data, self._op_shape.tensor_shape), axes), self._op_shape.shape, ) ret._op_shape = self._op_shape.reverse() return ret
def _expectation_value_pauli(self, pauli, qargs=None): """Compute the expectation value of a Pauli. Args: pauli (Pauli): a Pauli operator to evaluate expval of. qargs (None or list): subsystems to apply operator on. Returns: complex: the expectation value. """ n_pauli = len(pauli) if qargs is None: qubits = np.arange(n_pauli) else: qubits = np.array(qargs) x_mask = np.dot(1 << qubits, pauli.x) z_mask = np.dot(1 << qubits, pauli.z) pauli_phase = (-1j) ** pauli.phase if pauli.phase else 1 if x_mask + z_mask == 0: return pauli_phase * np.linalg.norm(self.data) if x_mask == 0: return pauli_phase * expval_pauli_no_x(self.data, self.num_qubits, z_mask) x_max = qubits[pauli.x][-1] y_phase = (-1j) ** pauli._count_y() y_phase = y_phase[0] return pauli_phase * expval_pauli_with_x( self.data, self.num_qubits, z_mask, x_mask, y_phase, x_max )
[Doku] def expectation_value( self, oper: BaseOperator | QuantumCircuit | Instruction, qargs: None | list[int] = None ) -> complex: """Compute the expectation value of an operator. Args: oper (Operator): an operator to evaluate expval of. qargs (None or list): subsystems to apply operator on. Returns: complex: the expectation value. """ if isinstance(oper, Pauli): return self._expectation_value_pauli(oper, qargs) if isinstance(oper, SparsePauliOp): return sum( coeff * self._expectation_value_pauli(Pauli((z, x)), qargs) for z, x, coeff in zip(oper.paulis.z, oper.paulis.x, oper.coeffs) ) val = self.evolve(oper, qargs=qargs) conj = self.conjugate() return np.dot(conj.data, val.data)
[Doku] def probabilities( self, qargs: None | list[int] = None, decimals: None | int = None ) -> np.ndarray: """Return the subsystem measurement probability vector. Measurement probabilities are with respect to measurement in the computation (diagonal) basis. Args: qargs (None or list): subsystems to return probabilities for, if None return for all subsystems (Default: None). decimals (None or int): the number of decimal places to round values. If None no rounding is done (Default: None). Returns: np.array: The Numpy vector array of probabilities. Examples: Consider a 2-qubit product state :math:`|\\psi\\rangle=|+\\rangle\\otimes|0\\rangle`. .. code-block:: from qiskit.quantum_info import Statevector psi = Statevector.from_label('+0') # Probabilities for measuring both qubits probs = psi.probabilities() print('probs: {}'.format(probs)) # Probabilities for measuring only qubit-0 probs_qubit_0 = psi.probabilities([0]) print('Qubit-0 probs: {}'.format(probs_qubit_0)) # Probabilities for measuring only qubit-1 probs_qubit_1 = psi.probabilities([1]) print('Qubit-1 probs: {}'.format(probs_qubit_1)) .. parsed-literal:: probs: [0.5 0. 0.5 0. ] Qubit-0 probs: [1. 0.] Qubit-1 probs: [0.5 0.5] We can also permute the order of qubits in the ``qargs`` list to change the qubit position in the probabilities output .. code-block:: from qiskit.quantum_info import Statevector psi = Statevector.from_label('+0') # Probabilities for measuring both qubits probs = psi.probabilities([0, 1]) print('probs: {}'.format(probs)) # Probabilities for measuring both qubits # but swapping qubits 0 and 1 in output probs_swapped = psi.probabilities([1, 0]) print('Swapped probs: {}'.format(probs_swapped)) .. parsed-literal:: probs: [0.5 0. 0.5 0. ] Swapped probs: [0.5 0.5 0. 0. ] """ probs = self._subsystem_probabilities( np.abs(self.data) ** 2, self._op_shape.dims_l(), qargs=qargs ) # to account for roundoff errors, we clip probs = np.clip(probs, a_min=0, a_max=1) if decimals is not None: probs = probs.round(decimals=decimals) return probs
[Doku] def reset(self, qargs: list[int] | None = None) -> Statevector: """Reset state or subsystems to the 0-state. Args: qargs (list or None): subsystems to reset, if None all subsystems will be reset to their 0-state (Default: None). Returns: Statevector: the reset state. Additional Information: If all subsystems are reset this will return the ground state on all subsystems. If only a some subsystems are reset this function will perform a measurement on those subsystems and evolve the subsystems so that the collapsed post-measurement states are rotated to the 0-state. The RNG seed for this sampling can be set using the :meth:`seed` method. """ if qargs is None: # Resetting all qubits does not require sampling or RNG ret = copy.copy(self) state = np.zeros(self._op_shape.shape, dtype=complex) state[0] = 1 ret._data = state return ret # Sample a single measurement outcome dims = self.dims(qargs) probs = self.probabilities(qargs) sample = self._rng.choice(len(probs), p=probs, size=1) # Convert to projector for state update proj = np.zeros(len(probs), dtype=complex) proj[sample] = 1 / np.sqrt(probs[sample]) # Rotate outcome to 0 reset = np.eye(len(probs)) reset[0, 0] = 0 reset[sample, sample] = 0 reset[0, sample] = 1 # compose with reset projection reset = np.dot(reset, np.diag(proj)) return self.evolve(Operator(reset, input_dims=dims, output_dims=dims), qargs=qargs)
[Doku] @classmethod def from_label(cls, label: str) -> Statevector: """Return a tensor product of Pauli X,Y,Z eigenstates. .. list-table:: Single-qubit state labels :header-rows: 1 * - Label - Statevector * - ``"0"`` - :math:`[1, 0]` * - ``"1"`` - :math:`[0, 1]` * - ``"+"`` - :math:`[1 / \\sqrt{2}, 1 / \\sqrt{2}]` * - ``"-"`` - :math:`[1 / \\sqrt{2}, -1 / \\sqrt{2}]` * - ``"r"`` - :math:`[1 / \\sqrt{2}, i / \\sqrt{2}]` * - ``"l"`` - :math:`[1 / \\sqrt{2}, -i / \\sqrt{2}]` Args: label (string): a eigenstate string ket label (see table for allowed values). Returns: Statevector: The N-qubit basis state density matrix. Raises: QiskitError: if the label contains invalid characters, or the length of the label is larger than an explicitly specified num_qubits. """ # Check label is valid if re.match(r"^[01rl\-+]+$", label) is None: raise QiskitError("Label contains invalid characters.") # We can prepare Z-eigenstates by converting the computational # basis bit-string to an integer and preparing that unit vector # However, for X-basis states, we will prepare a Z-eigenstate first # then apply Hadamard gates to rotate 0 and 1s to + and -. z_label = label xy_states = False if re.match("^[01]+$", label) is None: # We have X or Y eigenstates so replace +,r with 0 and # -,l with 1 and prepare the corresponding Z state xy_states = True z_label = z_label.replace("+", "0") z_label = z_label.replace("r", "0") z_label = z_label.replace("-", "1") z_label = z_label.replace("l", "1") # Initialize Z eigenstate vector num_qubits = len(label) data = np.zeros(1 << num_qubits, dtype=complex) pos = int(z_label, 2) data[pos] = 1 state = Statevector(data) if xy_states: # Apply hadamards to all qubits in X eigenstates x_mat = np.array([[1, 1], [1, -1]], dtype=complex) / np.sqrt(2) # Apply S.H to qubits in Y eigenstates y_mat = np.dot(np.diag([1, 1j]), x_mat) for qubit, char in enumerate(reversed(label)): if char in ["+", "-"]: state = state.evolve(x_mat, qargs=[qubit]) elif char in ["r", "l"]: state = state.evolve(y_mat, qargs=[qubit]) return state
[Doku] @staticmethod def from_int(i: int, dims: int | tuple | list) -> Statevector: """Return a computational basis statevector. Args: i (int): the basis state element. dims (int or tuple or list): The subsystem dimensions of the statevector (See additional information). Returns: Statevector: The computational basis state :math:`|i\\rangle`. Additional Information: The ``dims`` kwarg can be an integer or an iterable of integers. * ``Iterable`` -- the subsystem dimensions are the values in the list with the total number of subsystems given by the length of the list. * ``Int`` -- the integer specifies the total dimension of the state. If it is a power of two the state will be initialized as an N-qubit state. If it is not a power of two the state will have a single d-dimensional subsystem. """ size = np.prod(dims) state = np.zeros(size, dtype=complex) state[i] = 1.0 return Statevector(state, dims=dims)
[Doku] @classmethod def from_instruction(cls, instruction: Instruction | QuantumCircuit) -> Statevector: """Return the output statevector of an instruction. The statevector is initialized in the state :math:`|{0,\\ldots,0}\\rangle` of the same number of qubits as the input instruction or circuit, evolved by the input instruction, and the output statevector returned. Args: instruction (qiskit.circuit.Instruction or QuantumCircuit): instruction or circuit Returns: Statevector: The final statevector. Raises: QiskitError: if the instruction contains invalid instructions for the statevector simulation. """ # Convert circuit to an instruction if isinstance(instruction, QuantumCircuit): instruction = instruction.to_instruction() # Initialize an the statevector in the all |0> state init = np.zeros(2**instruction.num_qubits, dtype=complex) init[0] = 1.0 vec = Statevector(init, dims=instruction.num_qubits * (2,)) return Statevector._evolve_instruction(vec, instruction)
[Doku] def to_dict(self, decimals: None | int = None) -> dict: r"""Convert the statevector to dictionary form. This dictionary representation uses a Ket-like notation where the dictionary keys are qudit strings for the subsystem basis vectors. If any subsystem has a dimension greater than 10 comma delimiters are inserted between integers so that subsystems can be distinguished. Args: decimals (None or int): the number of decimal places to round values. If None no rounding is done (Default: None). Returns: dict: the dictionary form of the Statevector. Example: The ket-form of a 2-qubit statevector :math:`|\psi\rangle = |-\rangle\otimes |0\rangle` .. code-block:: from qiskit.quantum_info import Statevector psi = Statevector.from_label('-0') print(psi.to_dict()) .. parsed-literal:: {'00': (0.7071067811865475+0j), '10': (-0.7071067811865475+0j)} For non-qubit subsystems the integer range can go from 0 to 9. For example in a qutrit system .. code-block:: import numpy as np from qiskit.quantum_info import Statevector vec = np.zeros(9) vec[0] = 1 / np.sqrt(2) vec[-1] = 1 / np.sqrt(2) psi = Statevector(vec, dims=(3, 3)) print(psi.to_dict()) .. parsed-literal:: {'00': (0.7071067811865475+0j), '22': (0.7071067811865475+0j)} For large subsystem dimensions delimiters are required. The following example is for a 20-dimensional system consisting of a qubit and 10-dimensional qudit. .. code-block:: import numpy as np from qiskit.quantum_info import Statevector vec = np.zeros(2 * 10) vec[0] = 1 / np.sqrt(2) vec[-1] = 1 / np.sqrt(2) psi = Statevector(vec, dims=(2, 10)) print(psi.to_dict()) .. parsed-literal:: {'00': (0.7071067811865475+0j), '91': (0.7071067811865475+0j)} """ return self._vector_to_dict( self.data, self._op_shape.dims_l(), decimals=decimals, string_labels=True )
@staticmethod def _evolve_operator(statevec, oper, qargs=None): """Evolve a qudit statevector""" new_shape = statevec._op_shape.compose(oper._op_shape, qargs=qargs) if qargs is None: # Full system evolution statevec._data = np.dot(oper._data, statevec._data) statevec._op_shape = new_shape return statevec # Get transpose axes num_qargs = statevec._op_shape.num_qargs[0] indices = [num_qargs - 1 - i for i in reversed(qargs)] axes = indices + [i for i in range(num_qargs) if i not in indices] axes_inv = np.argsort(axes).tolist() # Calculate contraction dimensions contract_dim = oper._op_shape.shape[1] contract_shape = (contract_dim, statevec._op_shape.shape[0] // contract_dim) # Reshape and transpose input array for contraction tensor = np.transpose( np.reshape(statevec.data, statevec._op_shape.tensor_shape), axes, ) tensor_shape = tensor.shape # Perform contraction tensor = np.reshape( np.dot(oper.data, np.reshape(tensor, contract_shape)), tensor_shape, ) # Transpose back to original subsystem spec and flatten statevec._data = np.reshape(np.transpose(tensor, axes_inv), new_shape.shape[0]) # Update dimension statevec._op_shape = new_shape return statevec @staticmethod def _evolve_instruction(statevec, obj, qargs=None): """Update the current Statevector by applying an instruction.""" from qiskit.circuit.reset import Reset from qiskit.circuit.barrier import Barrier # pylint complains about a cyclic import since the following Initialize file # imports the StatePreparation, which again requires the Statevector (this file), # but as this is a local import, it's not actually an issue and can be ignored # pylint: disable=cyclic-import from qiskit.extensions.quantum_initializer.initializer import Initialize mat = Operator._instruction_to_matrix(obj) if mat is not None: # Perform the composition and inplace update the current state # of the operator return Statevector._evolve_operator(statevec, Operator(mat), qargs=qargs) # Special instruction types if isinstance(obj, Reset): statevec._data = statevec.reset(qargs)._data return statevec if isinstance(obj, Barrier): return statevec if isinstance(obj, Initialize): # state is initialized to labels in the initialize object if all(isinstance(param, str) for param in obj.params): initialization = Statevector.from_label("".join(obj.params))._data # state is initialized to an integer # here we're only checking the length as (1) a length-1 object necessarily means the # state is described by an integer (as labels were already covered) and (2) the int # was cast to a complex and we cannot do an int typecheck anyways elif len(obj.params) == 1: state = int(np.real(obj.params[0])) initialization = Statevector.from_int(state, (2,) * obj.num_qubits)._data # state is initialized to the statevector else: initialization = np.asarray(obj.params, dtype=complex) if qargs is None: statevec._data = initialization else: # if we act on a subsystem we first need to reset and then apply the # state preparation statevec._data = statevec.reset(qargs)._data mat = np.zeros((2 ** len(qargs), 2 ** len(qargs)), dtype=complex) mat[:, 0] = initialization statevec = Statevector._evolve_operator(statevec, Operator(mat), qargs=qargs) return statevec # If the instruction doesn't have a matrix defined we use its # circuit decomposition definition if it exists, otherwise we # cannot compose this gate and raise an error. if obj.definition is None: raise QiskitError(f"Cannot apply Instruction: {obj.name}") if not isinstance(obj.definition, QuantumCircuit): raise QiskitError( "{} instruction definition is {}; expected QuantumCircuit".format( obj.name, type(obj.definition) ) ) if obj.definition.global_phase: statevec._data *= np.exp(1j * float(obj.definition.global_phase)) qubits = {qubit: i for i, qubit in enumerate(obj.definition.qubits)} for instruction in obj.definition: if instruction.clbits: raise QiskitError( f"Cannot apply instruction with classical bits: {instruction.operation.name}" ) # Get the integer position of the flat register if qargs is None: new_qargs = [qubits[tup] for tup in instruction.qubits] else: new_qargs = [qargs[qubits[tup]] for tup in instruction.qubits] Statevector._evolve_instruction(statevec, instruction.operation, qargs=new_qargs) return statevec