Quellcode für qiskit.quantum_info.operators.random

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
Methods to create random operators.
"""

from __future__ import annotations
import numpy as np
from numpy.random import default_rng

from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators import Operator, Stinespring

# pylint: disable=unused-import
from .dihedral.random import random_cnotdihedral
from .symplectic.random import (
    random_clifford,
    random_pauli,
    random_pauli_list,
    random_pauli_table,
    random_stabilizer_table,
)

DEFAULT_RNG = default_rng()


[Doku]def random_unitary(dims: int | tuple, seed: int | np.random.Generator | None = None): """Return a random unitary Operator. The operator is sampled from the unitary Haar measure. Args: dims (int or tuple): the input dimensions of the Operator. seed (int or np.random.Generator): Optional. Set a fixed seed or generator for RNG. Returns: Operator: a unitary operator. """ if seed is None: random_state = DEFAULT_RNG elif isinstance(seed, np.random.Generator): random_state = seed else: random_state = default_rng(seed) dim = np.prod(dims) from scipy import stats mat = stats.unitary_group.rvs(dim, random_state=random_state) return Operator(mat, input_dims=dims, output_dims=dims)
[Doku]def random_hermitian( dims: int | tuple, traceless: bool = False, seed: int | np.random.Generator | None = None ): """Return a random hermitian Operator. The operator is sampled from Gaussian Unitary Ensemble. Args: dims (int or tuple): the input dimension of the Operator. traceless (bool): Optional. If True subtract diagonal entries to return a traceless hermitian operator (Default: False). seed (int or np.random.Generator): Optional. Set a fixed seed or generator for RNG. Returns: Operator: a Hermitian operator. """ if seed is None: rng = DEFAULT_RNG elif isinstance(seed, np.random.Generator): rng = seed else: rng = default_rng(seed) # Total dimension dim = np.prod(dims) from scipy import stats if traceless: mat = np.zeros((dim, dim), dtype=complex) else: # Generate diagonal part of matrix for Gaussian N(0, 1) mat = np.diag(stats.norm.rvs(scale=1, size=dim, random_state=rng).astype(complex)) # Generate lower triangular values from Gaussian N(0, 0.5) num_tril = (dim * (dim - 1)) // 2 real_tril = stats.norm.rvs(scale=0.5, size=num_tril, random_state=rng) imag_tril = stats.norm.rvs(scale=0.5, size=num_tril, random_state=rng) # Get lower triangular indices rows, cols = np.tril_indices(dim, -1) mat[(rows, cols)] = real_tril + 1j * imag_tril mat[(cols, rows)] = real_tril - 1j * imag_tril return Operator(mat, input_dims=dims, output_dims=dims)
[Doku]def random_quantum_channel( input_dims: int | tuple | None = None, output_dims: int | tuple | None = None, rank: int | None = None, seed: int | np.random.Generator | None = None, ): """Return a random CPTP quantum channel. This constructs the Stinespring operator for the quantum channel by sampling a random isometry from the unitary Haar measure. Args: input_dims (int or tuple): the input dimension of the channel. output_dims (int or tuple): the input dimension of the channel. rank (int): Optional. The rank of the quantum channel Choi-matrix. seed (int or np.random.Generator): Optional. Set a fixed seed or generator for RNG. Returns: Stinespring: a quantum channel operator. Raises: QiskitError: if rank or dimensions are invalid. """ # Determine total input and output dimensions if input_dims is None and output_dims is None: raise QiskitError( "No dimensions specified: input_dims and output_dims cannot both be None." ) if input_dims is None: input_dims = output_dims elif output_dims is None: output_dims = input_dims d_in = np.prod(input_dims) d_out = np.prod(output_dims) # If rank is not specified set to the maximum rank for the # Choi matrix (input_dim * output_dim) if rank is None or rank > d_in * d_out: rank = d_in * d_out if rank < 1: raise QiskitError(f"Rank {rank} must be greater than 0.") from scipy import stats # Generate a random unitary matrix unitary = stats.unitary_group.rvs(max(rank * d_out, d_in), random_state=seed) # Truncate columns to produce an isometry return Stinespring(unitary[:, :d_in], input_dims=input_dims, output_dims=output_dims)