RZZGate¶
- class RZZGate(theta)[source]¶
A parameteric 2-qubit \(Z \otimes Z\) interaction (rotation about ZZ).
This gate is symmetric, and is maximally entangling at \(\theta = \pi/2\).
Circuit Symbol:
q_0: ───■──── │zz(θ) q_1: ───■────
Matrix Representation:
\[ \begin{align}\begin{aligned}\newcommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{ZZ}(\theta) = exp(-i \th Z{\otimes}Z) = \begin{pmatrix} e^{-i \th} & 0 & 0 & 0 \\ 0 & e^{i \th} & 0 & 0 \\ 0 & 0 & e^{i \th} & 0 \\ 0 & 0 & 0 & e^{-i \th} \end{pmatrix}\end{split}\end{aligned}\end{align} \]This is a direct sum of RZ rotations, so this gate is equivalent to a uniformly controlled (multiplexed) RZ gate:
\[\begin{split}R_{ZZ}(\theta) = \begin{pmatrix} RZ(\theta) & 0 \\ 0 & RZ(-\theta) \end{pmatrix}\end{split}\]Examples:
\[R_{ZZ}(\theta = 0) = I\]\[R_{ZZ}(\theta = 2\pi) = -I\]\[R_{ZZ}(\theta = \pi) = - Z \otimes Z\]\[\begin{split}R_{ZZ}(\theta = \frac{\pi}{2}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1-i & 0 & 0 & 0 \\ 0 & 1+i & 0 & 0 \\ 0 & 0 & 1+i & 0 \\ 0 & 0 & 0 & 1-i \end{pmatrix}\end{split}\]Create new RZZ gate.
Attributes
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
Return definition in terms of other basic gates.
Return gate label
return instruction params.
Methods
RZZGate.add_decomposition
(decomposition)Add a decomposition of the instruction to the SessionEquivalenceLibrary.
Assemble a QasmQobjInstruction
RZZGate.broadcast_arguments
(qargs, cargs)Validation and handling of the arguments and its relationship.
RZZGate.c_if
(classical, val)Add classical condition on register classical and value val.
RZZGate.control
([num_ctrl_qubits, label, …])Return controlled version of gate.
RZZGate.copy
([name])Copy of the instruction.
Return inverse RZZ gate (i.e.
Return True .IFF.
For a composite instruction, reverse the order of sub-gates.
RZZGate.power
(exponent)Creates a unitary gate as gate^exponent.
Return a default OpenQASM string for the instruction.
Creates an instruction with gate repeated n amount of times.
Return a Numpy.array for the gate unitary matrix.