XGate

class XGate(label=None)[source]

The single-qubit Pauli-X gate (\(\sigma_x\)).

Matrix Representation:

\[\begin{split}X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\end{split}\]

Circuit symbol:

     ┌───┐
q_0: ┤ X ├
     └───┘

Equivalent to a \(\pi\) radian rotation about the X axis.

Note

A global phase difference exists between the definitions of \(RX(\pi)\) and \(X\).

\[\begin{split}RX(\pi) = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} = -i X\end{split}\]

The gate is equivalent to a classical bit flip.

\[\begin{split}|0\rangle \rightarrow |1\rangle \\ |1\rangle \rightarrow |0\rangle\end{split}\]

Create new X gate.

Attributes

XGate.decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

XGate.definition

Return definition in terms of other basic gates.

XGate.label

Return gate label

XGate.params

return instruction params.

Methods

XGate.add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

XGate.assemble()

Assemble a QasmQobjInstruction

XGate.broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

XGate.c_if(classical, val)

Add classical condition on register classical and value val.

XGate.control([num_ctrl_qubits, label, …])

Return a (mutli-)controlled-X gate.

XGate.copy([name])

Copy of the instruction.

XGate.inverse()

Return inverted X gate (itself).

XGate.is_parameterized()

Return True .IFF.

XGate.mirror()

For a composite instruction, reverse the order of sub-gates.

XGate.power(exponent)

Creates a unitary gate as gate^exponent.

XGate.qasm()

Return a default OpenQASM string for the instruction.

XGate.repeat(n)

Creates an instruction with gate repeated n amount of times.

XGate.to_matrix()

Return a numpy.array for the X gate.