SdgGate

class SdgGate(label=None)[source]

Single qubit S-adjoint gate (~Z**0.5).

It induces a \(-\pi/2\) phase.

This is a Clifford gate and a square-root of Pauli-Z.

Matrix Representation:

\[\begin{split}Sdg = \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix}\end{split}\]

Circuit symbol:

     ┌─────┐
q_0: ┤ Sdg ├
     └─────┘

Equivalent to a \(\pi/2\) radian rotation about the Z axis.

Create new Sdg gate.

Attributes

SdgGate.decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

SdgGate.definition

Return definition in terms of other basic gates.

SdgGate.label

Return gate label

SdgGate.params

return instruction params.

Methods

SdgGate.add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

SdgGate.assemble()

Assemble a QasmQobjInstruction

SdgGate.broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

SdgGate.c_if(classical, val)

Add classical condition on register classical and value val.

SdgGate.control([num_ctrl_qubits, label, …])

Return controlled version of gate.

SdgGate.copy([name])

Copy of the instruction.

SdgGate.inverse()

Return inverse of Sdg (SGate).

SdgGate.is_parameterized()

Return True .IFF.

SdgGate.mirror()

For a composite instruction, reverse the order of sub-gates.

SdgGate.power(exponent)

Creates a unitary gate as gate^exponent.

SdgGate.qasm()

Return a default OpenQASM string for the instruction.

SdgGate.repeat(n)

Creates an instruction with gate repeated n amount of times.

SdgGate.to_matrix()

Return a numpy.array for the Sdg gate.