RYYGate¶
- class RYYGate(theta)[source]¶
A parameteric 2-qubit \(Y \otimes Y\) interaction (rotation about YY).
This gate is symmetric, and is maximally entangling at \(\theta = \pi/2\).
Circuit Symbol:
┌─────────┐ q_0: ┤1 ├ │ Ryy(ϴ) │ q_1: ┤0 ├ └─────────┘
Matrix Representation:
\[ \begin{align}\begin{aligned}\newcommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{YY}(\theta) = exp(-i \th Y{\otimes}Y) = \begin{pmatrix} \cos(\th) & 0 & 0 & i\sin(\th) \\ 0 & \cos(\th) & -i\sin(\th) & 0 \\ 0 & -i\sin(\th) & \cos(\th) & 0 \\ i\sin(\th) & 0 & 0 & \cos(\th) \end{pmatrix}\end{split}\end{aligned}\end{align} \]Examples:
\[R_{YY}(\theta = 0) = I\]\[R_{YY}(\theta = \pi) = i Y \otimes Y\]\[\begin{split}R_{YY}(\theta = \frac{\pi}{2}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & -i & 0 \\ 0 & -i & 1 & 0 \\ i & 0 & 0 & 1 \end{pmatrix}\end{split}\]Create new RYY gate.
Attributes
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
Return definition in terms of other basic gates.
Return gate label
return instruction params.
Methods
RYYGate.add_decomposition
(decomposition)Add a decomposition of the instruction to the SessionEquivalenceLibrary.
Assemble a QasmQobjInstruction
RYYGate.broadcast_arguments
(qargs, cargs)Validation and handling of the arguments and its relationship.
RYYGate.c_if
(classical, val)Add classical condition on register classical and value val.
RYYGate.control
([num_ctrl_qubits, label, …])Return controlled version of gate.
RYYGate.copy
([name])Copy of the instruction.
Return inverse RYY gate (i.e.
Return True .IFF.
For a composite instruction, reverse the order of sub-gates.
RYYGate.power
(exponent)Creates a unitary gate as gate^exponent.
Return a default OpenQASM string for the instruction.
Creates an instruction with gate repeated n amount of times.
Return a Numpy.array for the gate unitary matrix.