Source code for qiskit.circuit.library.standard_gates.ryy

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Two-qubit YY-rotation gate."""

import numpy as np
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister


[docs]class RYYGate(Gate): r"""A parameteric 2-qubit :math:`Y \otimes Y` interaction (rotation about YY). This gate is symmetric, and is maximally entangling at :math:`\theta = \pi/2`. **Circuit Symbol:** .. parsed-literal:: ┌─────────┐ q_0: ┤1 ├ │ Ryy(ϴ) │ q_1: ┤0 ├ └─────────┘ **Matrix Representation:** .. math:: \newcommand{\th}{\frac{\theta}{2}} R_{YY}(\theta) = exp(-i \th Y{\otimes}Y) = \begin{pmatrix} \cos(\th) & 0 & 0 & i\sin(\th) \\ 0 & \cos(\th) & -i\sin(\th) & 0 \\ 0 & -i\sin(\th) & \cos(\th) & 0 \\ i\sin(\th) & 0 & 0 & \cos(\th) \end{pmatrix} **Examples:** .. math:: R_{YY}(\theta = 0) = I .. math:: R_{YY}(\theta = \pi) = i Y \otimes Y .. math:: R_{YY}(\theta = \frac{\pi}{2}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & -i & 0 \\ 0 & -i & 1 & 0 \\ i & 0 & 0 & 1 \end{pmatrix} """ def __init__(self, theta): """Create new RYY gate.""" super().__init__('ryy', 2, [theta]) def _define(self): """Calculate a subcircuit that implements this unitary.""" from .x import CXGate from .rx import RXGate from .rz import RZGate definition = [] q = QuantumRegister(2, 'q') theta = self.params[0] rule = [ (RXGate(np.pi / 2), [q[0]], []), (RXGate(np.pi / 2), [q[1]], []), (CXGate(), [q[0], q[1]], []), (RZGate(theta), [q[1]], []), (CXGate(), [q[0], q[1]], []), (RXGate(-np.pi / 2), [q[0]], []), (RXGate(-np.pi / 2), [q[1]], []), ] for inst in rule: definition.append(inst) self.definition = definition
[docs] def inverse(self): """Return inverse RYY gate (i.e. with the negative rotation angle).""" return RYYGate(-self.params[0])
# TODO: this is the correct matrix and is equal to the definition above, # however the control mechanism cannot distinguish U1 and RZ yet. # def to_matrix(self): # """Return a numpy.array for the RYY gate.""" # theta = self.params[0] # return np.exp(0.5j * theta) * np.array([ # [np.cos(theta / 2), 0, 0, 1j * np.sin(theta / 2)], # [0, np.cos(theta / 2), -1j * np.sin(theta / 2), 0], # [0, -1j * np.sin(theta / 2), np.cos(theta / 2), 0], # [1j * np.sin(theta / 2), 0, 0, np.cos(theta / 2)] # ], dtype=complex)