Source code for qiskit.circuit.library.standard_gates.rzz

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Two-qubit ZZ-rotation gate."""

from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister


[docs]class RZZGate(Gate): r"""A parameteric 2-qubit :math:`Z \otimes Z` interaction (rotation about ZZ). This gate is symmetric, and is maximally entangling at :math:`\theta = \pi/2`. **Circuit Symbol:** .. parsed-literal:: q_0: ───■──── │zz(θ) q_1: ───■──── **Matrix Representation:** .. math:: \newcommand{\th}{\frac{\theta}{2}} R_{ZZ}(\theta) = exp(-i \th Z{\otimes}Z) = \begin{pmatrix} e^{-i \th} & 0 & 0 & 0 \\ 0 & e^{i \th} & 0 & 0 \\ 0 & 0 & e^{i \th} & 0 \\ 0 & 0 & 0 & e^{-i \th} \end{pmatrix} This is a direct sum of RZ rotations, so this gate is equivalent to a uniformly controlled (multiplexed) RZ gate: .. math:: R_{ZZ}(\theta) = \begin{pmatrix} RZ(\theta) & 0 \\ 0 & RZ(-\theta) \end{pmatrix} **Examples:** .. math:: R_{ZZ}(\theta = 0) = I .. math:: R_{ZZ}(\theta = 2\pi) = -I .. math:: R_{ZZ}(\theta = \pi) = - Z \otimes Z .. math:: R_{ZZ}(\theta = \frac{\pi}{2}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1-i & 0 & 0 & 0 \\ 0 & 1+i & 0 & 0 \\ 0 & 0 & 1+i & 0 \\ 0 & 0 & 0 & 1-i \end{pmatrix} """ def __init__(self, theta): """Create new RZZ gate.""" super().__init__('rzz', 2, [theta]) def _define(self): """ gate rzz(theta) a, b { cx a, b; u1(theta) b; cx a, b; } """ from .u1 import U1Gate from .x import CXGate definition = [] q = QuantumRegister(2, 'q') rule = [ (CXGate(), [q[0], q[1]], []), (U1Gate(self.params[0]), [q[1]], []), (CXGate(), [q[0], q[1]], []) ] for inst in rule: definition.append(inst) self.definition = definition
[docs] def inverse(self): """Return inverse RZZ gate (i.e. with the negative rotation angle).""" return RZZGate(-self.params[0])
# TODO: this is the correct matrix and is equal to the definition above, # however the control mechanism cannot distinguish U1 and RZ yet. # def to_matrix(self): # """Return a numpy.array for the RZZ gate.""" # theta = float(self.params[0]) # return np.array([[np.exp(-1j*theta/2), 0, 0, 0], # [0, np.exp(1j*theta/2), 0, 0], # [0, 0, np.exp(1j*theta/2), 0], # [0, 0, 0, np.exp(-1j*theta/2)]], dtype=complex)