Code source de qiskit.opflow.utils

# This code is part of Qiskit.
#
# (C) Copyright IBM 2020, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Utility functions for OperatorFlow"""

from qiskit.opflow.operator_base import OperatorBase
from qiskit.utils.deprecation import deprecate_func


[docs]@deprecate_func( since="0.24.0", additional_msg="For code migration guidelines, visit https://qisk.it/opflow_migration.", ) def commutator(op_a: OperatorBase, op_b: OperatorBase) -> OperatorBase: r""" Deprecated: Compute commutator of `op_a` and `op_b`. .. math:: AB - BA. Args: op_a: Operator A op_b: Operator B Returns: OperatorBase: the commutator """ return (op_a @ op_b - op_b @ op_a).reduce()
[docs]@deprecate_func( since="0.24.0", additional_msg="For code migration guidelines, visit https://qisk.it/opflow_migration.", ) def anti_commutator(op_a: OperatorBase, op_b: OperatorBase) -> OperatorBase: r""" Deprecated: Compute anti-commutator of `op_a` and `op_b`. .. math:: AB + BA. Args: op_a: Operator A op_b: Operator B Returns: OperatorBase: the anti-commutator """ return (op_a @ op_b + op_b @ op_a).reduce()
[docs]@deprecate_func( since="0.24.0", additional_msg="For code migration guidelines, visit https://qisk.it/opflow_migration.", ) def double_commutator( op_a: OperatorBase, op_b: OperatorBase, op_c: OperatorBase, sign: bool = False, ) -> OperatorBase: r""" Deprecated: Compute symmetric double commutator of `op_a`, `op_b` and `op_c`. See McWeeny chapter 13.6 Equation of motion methods (page 479) If `sign` is `False`, it returns .. math:: [[A, B], C]/2 + [A, [B, C]]/2 = (2ABC + 2CBA - BAC - CAB - ACB - BCA)/2. If `sign` is `True`, it returns .. math:: \lbrace[A, B], C\rbrace/2 + \lbrace A, [B, C]\rbrace/2 = (2ABC - 2CBA - BAC + CAB - ACB + BCA)/2. Args: op_a: Operator A op_b: Operator B op_c: Operator C sign: False anti-commutes, True commutes Returns: OperatorBase: the double commutator """ sign_num = 1 if sign else -1 op_ab = op_a @ op_b op_ba = op_b @ op_a op_ac = op_a @ op_c op_ca = op_c @ op_a op_abc = op_ab @ op_c op_cba = op_c @ op_ba op_bac = op_ba @ op_c op_cab = op_c @ op_ab op_acb = op_ac @ op_b op_bca = op_b @ op_ca res = ( op_abc - sign_num * op_cba + 0.5 * (-op_bac + sign_num * op_cab - op_acb + sign_num * op_bca) ) return res.reduce()