qiskit.ignis.characterization.DragFitter¶
-
class
DragFitter
(backend_result, xdata, qubits, fit_p0, fit_bounds=None)[código fonte]¶ Drag Experiment fitter
See IQFitter __init__
fit_p0 is [a, x0, c] where the fit is a*(x-x0)^2+c
-
__init__
(backend_result, xdata, qubits, fit_p0, fit_bounds=None)[código fonte]¶ See IQFitter __init__
fit_p0 is [a, x0, c] where the fit is a*(x-x0)^2+c
Methods
__init__
(backend_result, xdata, qubits, fit_p0)See IQFitter __init__
add_data
(results[, recalc, refit])Add new execution results to previous execution results
drag_amplitude
([qind])Return the drag amplitude from the fit
fit_data
([qid, p0, bounds, series])Fit the curve.
guess_params
([qind])Guess parameters for the drag fit
plot
(qind[, series, ax, show_plot])Plot the data and fit
Attributes
Return the execution results
Return the fitter’s purpose, e.g.
Return the function used in the fit, e.g.
Return the indices of the qubits to be characterized
Return the fit function parameters that were calculated by curve_fit
Return the error of the fit function parameters
Return the list of series for the data
Return the data points on the x-axis, the independenet parameter which is fit against
Return the data points on the y-axis
-
add_data
(results, recalc=True, refit=True)¶ Add new execution results to previous execution results
- Parâmetros
results (
Union
[Result
,List
[Result
]]) – new execution resultsrecalc (
bool
) – whether tp recalculate the datarefit (
bool
) – whether to refit the data
-
property
backend_result
¶ Return the execution results
- Tipo de retorno
Union
[Result
,List
[Result
]]
-
property
description
¶ Return the fitter’s purpose, e.g. ‘T1’
- Tipo de retorno
str
-
drag_amplitude
(qind=- 1)[código fonte]¶ Return the drag amplitude from the fit
- Parâmetros
qind (int) – qubit index
- Retorna
drag amp
- Tipo de retorno
float
-
fit_data
(qid=- 1, p0=None, bounds=None, series=None)¶ Fit the curve.
Compute self._params and self._params_err
- Parâmetros
qid (
int
) – qubit for fitting. If -1 fit for all the qubitsp0 (
Optional
[List
[float
]]) – initial guess, equivalent to p0 in scipy.optimizebounds (
Optional
[Tuple
[List
[float
],List
[float
]]]) – bounds, equivalent to bounds in scipy.optimizeseries (
Optional
[str
]) – series to fit (if None fit all)
-
property
fit_fun
¶ Return the function used in the fit, e.g. BaseFitter._exp_fit_fun
- Tipo de retorno
Callable
-
guess_params
(qind=0)[código fonte]¶ Guess parameters for the drag fit
- Parâmetros
qind (int) – qubit index
- Retorna
- guess parameters
[a, x0, c] where the fit is \(a * (x - x0)^{2+c}\)
- Tipo de retorno
list
-
property
measured_qubits
¶ Return the indices of the qubits to be characterized
- Tipo de retorno
List
[int
]
-
property
params
¶ Return the fit function parameters that were calculated by curve_fit
- Tipo de retorno
List
[float
]
-
property
params_err
¶ Return the error of the fit function parameters
- Tipo de retorno
List
[float
]
-
plot
(qind, series='0', ax=None, show_plot=False)[código fonte]¶ Plot the data and fit
- Parâmetros
qind (int) – qubit index
series (str) – data series to plot (for rabi data always ‘0’)
ax (Axes) – matploblib axes (if none created)
show_plot (bool) – do plot.show
- Retorna
Plot axes
- Tipo de retorno
Axes
-
property
series
¶ Return the list of series for the data
- Tipo de retorno
Optional
[List
[str
]]
-
property
xdata
¶ Return the data points on the x-axis, the independenet parameter which is fit against
- Tipo de retorno
Union
[List
[float
],array
]
-
property
ydata
¶ Return the data points on the y-axis
The data points are returning in the form of a list of dictionaries:
- ydata[i][‘mean’] is a list, where item
no. j is the probability of success of qubit i for a circuit that lasts xdata[j].
- ydata[i][‘std’] is a list, where ydata[‘std’][j] is the
standard deviation of the success of qubit i.
- Tipo de retorno
List
[Dict
]
-