qiskit.ignis.characterization.DragFitter¶
-
class
DragFitter
(backend_result, xdata, qubits, fit_p0, fit_bounds=None)[ソース]¶ Drag Experiment fitter
See IQFitter __init__
fit_p0 is [a, x0, c] where the fit is a*(x-x0)^2+c
-
__init__
(backend_result, xdata, qubits, fit_p0, fit_bounds=None)[ソース]¶ See IQFitter __init__
fit_p0 is [a, x0, c] where the fit is a*(x-x0)^2+c
Methods
__init__
(backend_result, xdata, qubits, fit_p0)See IQFitter __init__
add_data
(results[, recalc, refit])Add new execution results to previous execution results
drag_amplitude
([qind])Return the drag amplitude from the fit
fit_data
([qid, p0, bounds, series])Fit the curve.
guess_params
([qind])Guess parameters for the drag fit
plot
(qind[, series, ax, show_plot])Plot the data and fit
Attributes
Return the execution results
Return the fitter’s purpose, e.g.
Return the function used in the fit, e.g.
Return the indices of the qubits to be characterized
Return the fit function parameters that were calculated by curve_fit
Return the error of the fit function parameters
Return the list of series for the data
Return the data points on the x-axis, the independenet parameter which is fit against
Return the data points on the y-axis
-
add_data
(results, recalc=True, refit=True)¶ Add new execution results to previous execution results
- パラメータ
results (
Union
[Result
,List
[Result
]]) – new execution resultsrecalc (
bool
) – whether tp recalculate the datarefit (
bool
) – whether to refit the data
-
property
backend_result
¶ Return the execution results
- 戻り値の型
Union
[Result
,List
[Result
]]
-
property
description
¶ Return the fitter’s purpose, e.g. 『T1』
- 戻り値の型
str
-
drag_amplitude
(qind=- 1)[ソース]¶ Return the drag amplitude from the fit
- パラメータ
qind (int) – qubit index
- 戻り値
drag amp
- 戻り値の型
float
-
fit_data
(qid=- 1, p0=None, bounds=None, series=None)¶ Fit the curve.
Compute self._params and self._params_err
- パラメータ
qid (
int
) – qubit for fitting. If -1 fit for all the qubitsp0 (
Optional
[List
[float
]]) – initial guess, equivalent to p0 in scipy.optimizebounds (
Optional
[Tuple
[List
[float
],List
[float
]]]) – bounds, equivalent to bounds in scipy.optimizeseries (
Optional
[str
]) – series to fit (if None fit all)
-
property
fit_fun
¶ Return the function used in the fit, e.g. BaseFitter._exp_fit_fun
- 戻り値の型
Callable
-
guess_params
(qind=0)[ソース]¶ Guess parameters for the drag fit
- パラメータ
qind (int) – qubit index
- 戻り値
- guess parameters
[a, x0, c] where the fit is \(a * (x - x0)^{2+c}\)
- 戻り値の型
list
-
property
measured_qubits
¶ Return the indices of the qubits to be characterized
- 戻り値の型
List
[int
]
-
property
params
¶ Return the fit function parameters that were calculated by curve_fit
- 戻り値の型
List
[float
]
-
property
params_err
¶ Return the error of the fit function parameters
- 戻り値の型
List
[float
]
-
plot
(qind, series='0', ax=None, show_plot=False)[ソース]¶ Plot the data and fit
- パラメータ
qind (int) – qubit index
series (str) – data series to plot (for rabi data always 『0』)
ax (Axes) – matploblib axes (if none created)
show_plot (bool) – do plot.show
- 戻り値
Plot axes
- 戻り値の型
Axes
-
property
series
¶ Return the list of series for the data
- 戻り値の型
Optional
[List
[str
]]
-
property
xdata
¶ Return the data points on the x-axis, the independenet parameter which is fit against
- 戻り値の型
Union
[List
[float
],array
]
-
property
ydata
¶ Return the data points on the y-axis
The data points are returning in the form of a list of dictionaries:
- ydata[i][『mean』] is a list, where item
no. j is the probability of success of qubit i for a circuit that lasts xdata[j].
- ydata[i][『std』] is a list, where ydata[『std』][j] is the
standard deviation of the success of qubit i.
- 戻り値の型
List
[Dict
]
-