English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.ignis.characterization.DragFitter

class DragFitter(backend_result, xdata, qubits, fit_p0, fit_bounds=None)[source]

Drag Experiment fitter

See IQFitter __init__

fit_p0 is [a, x0, c] where the fit is a*(x-x0)^2+c

__init__(backend_result, xdata, qubits, fit_p0, fit_bounds=None)[source]

See IQFitter __init__

fit_p0 is [a, x0, c] where the fit is a*(x-x0)^2+c

Methods

__init__(backend_result, xdata, qubits, fit_p0)

See IQFitter __init__

add_data(results[, recalc, refit])

Add new execution results to previous execution results

drag_amplitude([qind])

Return the drag amplitude from the fit

fit_data([qid, p0, bounds, series])

Fit the curve.

guess_params([qind])

Guess parameters for the drag fit

plot(qind[, series, ax, show_plot])

Plot the data and fit

Attributes

backend_result

Return the execution results

description

Return the fitter’s purpose, e.g.

fit_fun

Return the function used in the fit, e.g.

measured_qubits

Return the indices of the qubits to be characterized

params

Return the fit function parameters that were calculated by curve_fit

params_err

Return the error of the fit function parameters

series

Return the list of series for the data

xdata

Return the data points on the x-axis, the independenet parameter which is fit against

ydata

Return the data points on the y-axis

add_data(results, recalc=True, refit=True)

Add new execution results to previous execution results

Parameters
  • results (Union[Result, List[Result]]) – new execution results

  • recalc (bool) – whether tp recalculate the data

  • refit (bool) – whether to refit the data

property backend_result

Return the execution results

Return type

Union[Result, List[Result]]

property description

Return the fitter’s purpose, e.g. ‘T1’

Return type

str

drag_amplitude(qind=- 1)[source]

Return the drag amplitude from the fit

Parameters

qind (int) – qubit index

Returns

drag amp

Return type

float

fit_data(qid=- 1, p0=None, bounds=None, series=None)

Fit the curve.

Compute self._params and self._params_err

Parameters
  • qid (int) – qubit for fitting. If -1 fit for all the qubits

  • p0 (Optional[List[float]]) – initial guess, equivalent to p0 in scipy.optimize

  • bounds (Optional[Tuple[List[float], List[float]]]) – bounds, equivalent to bounds in scipy.optimize

  • series (Optional[str]) – series to fit (if None fit all)

property fit_fun

Return the function used in the fit, e.g. BaseFitter._exp_fit_fun

Return type

Callable

guess_params(qind=0)[source]

Guess parameters for the drag fit

Parameters

qind (int) – qubit index

Returns

guess parameters

[a, x0, c] where the fit is \(a * (x - x0)^{2+c}\)

Return type

list

property measured_qubits

Return the indices of the qubits to be characterized

Return type

List[int]

property params

Return the fit function parameters that were calculated by curve_fit

Return type

List[float]

property params_err

Return the error of the fit function parameters

Return type

List[float]

plot(qind, series='0', ax=None, show_plot=False)[source]

Plot the data and fit

Parameters
  • qind (int) – qubit index

  • series (str) – data series to plot (for rabi data always ‘0’)

  • ax (Axes) – matploblib axes (if none created)

  • show_plot (bool) – do plot.show

Returns

Plot axes

Return type

Axes

property series

Return the list of series for the data

Return type

Optional[List[str]]

property xdata

Return the data points on the x-axis, the independenet parameter which is fit against

Return type

Union[List[float], array]

property ydata

Return the data points on the y-axis

The data points are returning in the form of a list of dictionaries:

  • ydata[i][‘mean’] is a list, where item

    no. j is the probability of success of qubit i for a circuit that lasts xdata[j].

  • ydata[i][‘std’] is a list, where ydata[‘std’][j] is the

    standard deviation of the success of qubit i.

Return type

List[Dict]