qiskit.ignis.characterization.DragFitter¶
-
class
DragFitter
(backend_result, xdata, qubits, fit_p0, fit_bounds=None)[소스]¶ Drag Experiment fitter
See IQFitter __init__
fit_p0 is [a, x0, c] where the fit is a*(x-x0)^2+c
-
__init__
(backend_result, xdata, qubits, fit_p0, fit_bounds=None)[소스]¶ See IQFitter __init__
fit_p0 is [a, x0, c] where the fit is a*(x-x0)^2+c
Methods
__init__
(backend_result, xdata, qubits, fit_p0)See IQFitter __init__
add_data
(results[, recalc, refit])Add new execution results to previous execution results
drag_amplitude
([qind])Return the drag amplitude from the fit
fit_data
([qid, p0, bounds, series])Fit the curve.
guess_params
([qind])Guess parameters for the drag fit
plot
(qind[, series, ax, show_plot])Plot the data and fit
Attributes
Return the execution results
Return the fitter’s purpose, e.g.
Return the function used in the fit, e.g.
Return the indices of the qubits to be characterized
Return the fit function parameters that were calculated by curve_fit
Return the error of the fit function parameters
Return the list of series for the data
Return the data points on the x-axis, the independenet parameter which is fit against
Return the data points on the y-axis
-
add_data
(results, recalc=True, refit=True)¶ Add new execution results to previous execution results
- 매개변수
results (
Union
[Result
,List
[Result
]]) – new execution resultsrecalc (
bool
) – whether tp recalculate the datarefit (
bool
) – whether to refit the data
-
property
backend_result
¶ Return the execution results
- 반환 형식
Union
[Result
,List
[Result
]]
-
property
description
¶ Return the fitter’s purpose, e.g. ‘T1’
- 반환 형식
str
-
drag_amplitude
(qind=- 1)[소스]¶ Return the drag amplitude from the fit
- 매개변수
qind (int) – qubit index
- 반환값
drag amp
- 반환 형식
float
-
fit_data
(qid=- 1, p0=None, bounds=None, series=None)¶ Fit the curve.
Compute self._params and self._params_err
- 매개변수
qid (
int
) – qubit for fitting. If -1 fit for all the qubitsp0 (
Optional
[List
[float
]]) – initial guess, equivalent to p0 in scipy.optimizebounds (
Optional
[Tuple
[List
[float
],List
[float
]]]) – bounds, equivalent to bounds in scipy.optimizeseries (
Optional
[str
]) – series to fit (if None fit all)
-
property
fit_fun
¶ Return the function used in the fit, e.g. BaseFitter._exp_fit_fun
- 반환 형식
Callable
-
guess_params
(qind=0)[소스]¶ Guess parameters for the drag fit
- 매개변수
qind (int) – qubit index
- 반환값
- guess parameters
[a, x0, c] where the fit is \(a * (x - x0)^{2+c}\)
- 반환 형식
list
-
property
measured_qubits
¶ Return the indices of the qubits to be characterized
- 반환 형식
List
[int
]
-
property
params
¶ Return the fit function parameters that were calculated by curve_fit
- 반환 형식
List
[float
]
-
property
params_err
¶ Return the error of the fit function parameters
- 반환 형식
List
[float
]
-
plot
(qind, series='0', ax=None, show_plot=False)[소스]¶ Plot the data and fit
- 매개변수
qind (int) – qubit index
series (str) – data series to plot (for rabi data always ‘0’)
ax (Axes) – matploblib axes (if none created)
show_plot (bool) – do plot.show
- 반환값
Plot axes
- 반환 형식
Axes
-
property
series
¶ Return the list of series for the data
- 반환 형식
Optional
[List
[str
]]
-
property
xdata
¶ Return the data points on the x-axis, the independenet parameter which is fit against
- 반환 형식
Union
[List
[float
],array
]
-
property
ydata
¶ Return the data points on the y-axis
The data points are returning in the form of a list of dictionaries:
- ydata[i][‘mean’] is a list, where item
no. j is the probability of success of qubit i for a circuit that lasts xdata[j].
- ydata[i][‘std’] is a list, where ydata[‘std’][j] is the
standard deviation of the success of qubit i.
- 반환 형식
List
[Dict
]
-