Código fuente para qiskit.quantum_info.operators.dihedral.dihedral

# This code is part of Qiskit.
#
# (C) Copyright IBM 2019, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
CNOTDihedral operator class.
"""
from __future__ import annotations
import itertools
import numpy as np

from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.base_operator import BaseOperator
from qiskit.quantum_info.operators.operator import Operator
from qiskit.quantum_info.operators.symplectic.pauli import Pauli
from qiskit.quantum_info.operators.scalar_op import ScalarOp
from qiskit.quantum_info.operators.mixins import generate_apidocs, AdjointMixin
from qiskit.circuit import QuantumCircuit, Instruction
from .dihedral_circuits import _append_circuit
from .polynomial import SpecialPolynomial


[documentos]class CNOTDihedral(BaseOperator, AdjointMixin): """An N-qubit operator from the CNOT-Dihedral group. The CNOT-Dihedral group is generated by the quantum gates, :class:`~qiskit.circuit.library.CXGate`, :class:`~qiskit.circuit.library.TGate`, and :class:`~qiskit.circuit.library.XGate`. **Representation** An :math:`N`-qubit CNOT-Dihedral operator is stored as an affine function and a phase polynomial, based on the convention in references [1, 2]. The affine function consists of an :math:`N \\times N` invertible binary matrix, and an :math:`N` binary vector. The phase polynomial is a polynomial of degree at most 3, in :math:`N` variables, whose coefficients are in the ring Z_8 with 8 elements. .. code-block:: from qiskit import QuantumCircuit from qiskit.quantum_info import CNOTDihedral circ = QuantumCircuit(3) circ.cx(0, 1) circ.x(2) circ.t(1) circ.t(1) circ.t(1) elem = CNOTDihedral(circ) # Print the CNOTDihedral element print(elem) .. parsed-literal:: phase polynomial = 0 + 3*x_0 + 3*x_1 + 2*x_0*x_1 affine function = (x_0,x_0 + x_1,x_2 + 1) **Circuit Conversion** CNOTDihedral operators can be initialized from circuits containing *only* the following gates: :class:`~qiskit.circuit.library.IGate`, :class:`~qiskit.circuit.library.XGate`, :class:`~qiskit.circuit.library.YGate`, :class:`~qiskit.circuit.library.ZGate`, :class:`~qiskit.circuit.library.TGate`, :class:`~qiskit.circuit.library.TdgGate` :class:`~qiskit.circuit.library.SGate`, :class:`~qiskit.circuit.library.SdgGate`, :class:`~qiskit.circuit.library.CXGate`, :class:`~qiskit.circuit.library.CZGate`, :class:`~qiskit.circuit.library.CSGate`, :class:`~qiskit.circuit.library.CSdgGate`, :class:`~qiskit.circuit.library.SwapGate`, :class:`~qiskit.circuit.library.CCZGate`. They can be converted back into a :class:`~qiskit.circuit.QuantumCircuit`, or :class:`~qiskit.circuit.Gate` object using the :meth:`~CNOTDihedral.to_circuit` or :meth:`~CNOTDihderal.to_instruction` methods respectively. Note that this decomposition is not necessarily optimal in terms of number of gates if the number of qubits is more than two. CNOTDihedral operators can also be converted to :class:`~qiskit.quantum_info.Operator` objects using the :meth:`to_operator` method. This is done via decomposing to a circuit, and then simulating the circuit as a unitary operator. References: 1. Shelly Garion and Andrew W. Cross, *Synthesis of CNOT-Dihedral circuits with optimal number of two qubit gates*, `Quantum 4(369), 2020 <https://quantum-journal.org/papers/q-2020-12-07-369/>`_ 2. Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta, *Scalable randomised benchmarking of non-Clifford gates*, npj Quantum Inf 2, 16012 (2016). """ def __init__( self, data: CNOTDihedral | QuantumCircuit | Instruction | None = None, num_qubits: int | None = None, validate: bool = True, ): """Initialize a CNOTDihedral operator object. Args: data (CNOTDihedral or QuantumCircuit or ~qiskit.circuit.Instruction): Optional, operator to initialize. num_qubits (int): Optional, initialize an empty CNOTDihedral operator. validate (bool): if True, validates the CNOTDihedral element. Raises: QiskitError: if the type is invalid. QiskitError: if validate=True and the CNOTDihedral element is invalid. """ if num_qubits: # initialize n-qubit identity self._num_qubits = num_qubits # phase polynomial self.poly = SpecialPolynomial(self._num_qubits) # n x n invertible matrix over Z_2 self.linear = np.eye(self._num_qubits, dtype=np.int8) # binary shift, n coefficients in Z_2 self.shift = np.zeros(self._num_qubits, dtype=np.int8) # Initialize from another CNOTDihedral by sharing the underlying # poly, linear and shift elif isinstance(data, CNOTDihedral): self.linear = data.linear self.shift = data.shift self.poly = data.poly # Initialize from ScalarOp as N-qubit identity discarding any global phase elif isinstance(data, ScalarOp): if not data.is_unitary() or set(data._input_dims) != {2} or data.num_qubits is None: raise QiskitError("Can only initialize from N-qubit identity ScalarOp.") self._num_qubits = data.num_qubits # phase polynomial self.poly = SpecialPolynomial(self._num_qubits) # n x n invertible matrix over Z_2 self.linear = np.eye(self._num_qubits, dtype=np.int8) # binary shift, n coefficients in Z_2 self.shift = np.zeros(self._num_qubits, dtype=np.int8) # Initialize from a QuantumCircuit or Instruction object elif isinstance(data, (QuantumCircuit, Instruction)): self._num_qubits = data.num_qubits elem = self._from_circuit(data) self.poly = elem.poly self.linear = elem.linear self.shift = elem.shift elif isinstance(data, Pauli): self._num_qubits = data.num_qubits elem = self._from_circuit(data.to_instruction()) self.poly = elem.poly self.linear = elem.linear self.shift = elem.shift else: raise QiskitError("Invalid input type for CNOTDihedral class.") # Initialize BaseOperator super().__init__(num_qubits=self._num_qubits) # Validate the CNOTDihedral element if validate and not self._is_valid(): raise QiskitError("Invalid CNOTDihedral element.") @property def name(self): """Unique string identifier for operation type.""" return "cnotdihedral" @property def num_clbits(self): """Number of classical bits.""" return 0 def _z2matmul(self, left, right): """Compute product of two n x n z2 matrices.""" prod = np.mod(np.dot(left, right), 2) return prod def _z2matvecmul(self, mat, vec): """Compute mat*vec of n x n z2 matrix and vector.""" prod = np.mod(np.dot(mat, vec), 2) return prod def _dot(self, other): """Left multiplication self * other.""" if self.num_qubits != other.num_qubits: raise QiskitError("Multiplication on different number of qubits.") result = CNOTDihedral(num_qubits=self.num_qubits) result.shift = [ (x[0] + x[1]) % 2 for x in zip(self._z2matvecmul(self.linear, other.shift), self.shift) ] result.linear = self._z2matmul(self.linear, other.linear) # Compute x' = B1*x + c1 using the p_j identity new_vars = [] for i in range(self.num_qubits): support = np.arange(self.num_qubits)[np.nonzero(other.linear[i])] poly = SpecialPolynomial(self.num_qubits) poly.set_pj(support) if other.shift[i] == 1: poly = -1 * poly poly.weight_0 = (poly.weight_0 + 1) % 8 new_vars.append(poly) # p' = p1 + p2(x') result.poly = other.poly + self.poly.evaluate(new_vars) return result def _compose(self, other): """Right multiplication other * self.""" if self.num_qubits != other.num_qubits: raise QiskitError("Multiplication on different number of qubits.") result = CNOTDihedral(num_qubits=self.num_qubits) result.shift = [ (x[0] + x[1]) % 2 for x in zip(self._z2matvecmul(other.linear, self.shift), other.shift) ] result.linear = self._z2matmul(other.linear, self.linear) # Compute x' = B1*x + c1 using the p_j identity new_vars = [] for i in range(self.num_qubits): support = np.arange(other.num_qubits)[np.nonzero(self.linear[i])] poly = SpecialPolynomial(self.num_qubits) poly.set_pj(support) if self.shift[i] == 1: poly = -1 * poly poly.weight_0 = (poly.weight_0 + 1) % 8 new_vars.append(poly) # p' = p1 + p2(x') result.poly = self.poly + other.poly.evaluate(new_vars) return result def __eq__(self, other): """Test equality.""" return ( isinstance(other, CNOTDihedral) and self.poly == other.poly and (self.linear == other.linear).all() and (self.shift == other.shift).all() ) def _append_cx(self, i, j): """Apply a CX gate to this element. Left multiply the element by CX(i, j). """ if not 0 <= i < self.num_qubits or not 0 <= j < self.num_qubits: raise QiskitError("CX qubits are out of bounds.") self.linear[j] = (self.linear[i] + self.linear[j]) % 2 self.shift[j] = (self.shift[i] + self.shift[j]) % 2 def _append_phase(self, k, i): """Apply an k-th power of T to this element. Left multiply the element by T_i^k. """ if not 0 <= i < self.num_qubits: raise QiskitError("phase qubit out of bounds.") # If the kth bit is flipped, conjugate this gate if self.shift[i] == 1: k = (7 * k) % 8 # Take all subsets \alpha of the support of row i # of weight up to 3 and add k*(-2)**(|\alpha| - 1) mod 8 # to the corresponding term. support = np.arange(self.num_qubits)[np.nonzero(self.linear[i])] subsets_2 = itertools.combinations(support, 2) subsets_3 = itertools.combinations(support, 3) for j in support: value = self.poly.get_term([j]) self.poly.set_term([j], (value + k) % 8) for j in subsets_2: value = self.poly.get_term(list(j)) self.poly.set_term(list(j), (value + -2 * k) % 8) for j in subsets_3: value = self.poly.get_term(list(j)) self.poly.set_term(list(j), (value + 4 * k) % 8) def _append_x(self, i): """Apply X to this element. Left multiply the element by X(i). """ if not 0 <= i < self.num_qubits: raise QiskitError("X qubit out of bounds.") self.shift[i] = (self.shift[i] + 1) % 2 def __str__(self): """Return formatted string representation.""" out = "phase polynomial = \n" out += str(self.poly) out += "\naffine function = \n" out += " (" for row in range(self.num_qubits): wrote = False for col in range(self.num_qubits): if self.linear[row][col] != 0: if wrote: out += " + x_" + str(col) else: out += "x_" + str(col) wrote = True if self.shift[row] != 0: out += " + 1" if row != self.num_qubits - 1: out += "," out += ")\n" return out
[documentos] def to_circuit(self): """Return a QuantumCircuit implementing the CNOT-Dihedral element. Return: QuantumCircuit: a circuit implementation of the CNOTDihedral object. References: 1. Shelly Garion and Andrew W. Cross, *Synthesis of CNOT-Dihedral circuits with optimal number of two qubit gates*, `Quantum 4(369), 2020 <https://quantum-journal.org/papers/q-2020-12-07-369/>`_ 2. Andrew W. Cross, Easwar Magesan, Lev S. Bishop, John A. Smolin and Jay M. Gambetta, *Scalable randomised benchmarking of non-Clifford gates*, npj Quantum Inf 2, 16012 (2016). """ from qiskit.synthesis.cnotdihedral import synth_cnotdihedral_full return synth_cnotdihedral_full(self)
[documentos] def to_instruction(self): """Return a Gate instruction implementing the CNOTDihedral object.""" return self.to_circuit().to_gate()
def _from_circuit(self, circuit): """Initialize from a QuantumCircuit or Instruction. Args: circuit (QuantumCircuit or ~qiskit.circuit.Instruction): instruction to initialize. Returns: CNOTDihedral: the CNOTDihedral object for the circuit. Raises: QiskitError: if the input instruction is not CNOTDihedral or contains classical register instruction. """ if not isinstance(circuit, (QuantumCircuit, Instruction)): raise QiskitError("Input must be a QuantumCircuit or Instruction") # Initialize an identity CNOTDihedral object elem = CNOTDihedral(num_qubits=self._num_qubits) _append_circuit(elem, circuit) return elem def __array__(self, dtype=None): if dtype: return np.asarray(self.to_matrix(), dtype=dtype) return self.to_matrix()
[documentos] def to_matrix(self): """Convert operator to Numpy matrix.""" return self.to_operator().data
[documentos] def to_operator(self) -> Operator: """Convert to an Operator object.""" return Operator(self.to_instruction())
[documentos] def compose( self, other: CNOTDihedral, qargs: list | None = None, front: bool = False ) -> CNOTDihedral: if qargs is not None: raise NotImplementedError("compose method does not support qargs.") if self.num_qubits != other.num_qubits: raise QiskitError("Incompatible dimension for composition") if front: other = self._dot(other) else: other = self._compose(other) other.poly.weight_0 = 0 # set global phase return other
def _tensor(self, other, reverse=False): """Returns the tensor product operator.""" if not isinstance(other, CNOTDihedral): raise QiskitError("Tensored element is not a CNOTDihderal object.") if reverse: elem0 = self elem1 = other else: elem0 = other elem1 = self result = CNOTDihedral(num_qubits=elem0.num_qubits + elem1.num_qubits) linear = np.block( [ [elem0.linear, np.zeros((elem0.num_qubits, elem1.num_qubits), dtype=np.int8)], [np.zeros((elem1.num_qubits, elem0.num_qubits), dtype=np.int8), elem1.linear], ] ) result.linear = linear shift = np.block([elem0.shift, elem1.shift]) result.shift = shift for i in range(elem0.num_qubits): value = elem0.poly.get_term([i]) result.poly.set_term([i], value) for j in range(i): value = elem0.poly.get_term([j, i]) result.poly.set_term([j, i], value) for k in range(j): value = elem0.poly.get_term([k, j, i]) result.poly.set_term([k, j, i], value) for i in range(elem1.num_qubits): value = elem1.poly.get_term([i]) result.poly.set_term([i + elem0.num_qubits], value) for j in range(i): value = elem1.poly.get_term([j, i]) result.poly.set_term([j + elem0.num_qubits, i + elem0.num_qubits], value) for k in range(j): value = elem1.poly.get_term([k, j, i]) result.poly.set_term( [k + elem0.num_qubits, j + elem0.num_qubits, i + elem0.num_qubits], value ) return result
[documentos] def tensor(self, other: CNOTDihedral) -> CNOTDihedral: return self._tensor(other, reverse=True)
[documentos] def expand(self, other: CNOTDihedral) -> CNOTDihedral: return self._tensor(other, reverse=False)
[documentos] def adjoint(self): circ = self.to_instruction() result = self._from_circuit(circ.inverse()) return result
[documentos] def conjugate(self): circ = self.to_instruction() new_circ = QuantumCircuit(self.num_qubits) bit_indices = {bit: index for index, bit in enumerate(circ.definition.qubits)} for instruction in circ.definition: new_qubits = [bit_indices[tup] for tup in instruction.qubits] if instruction.operation.name == "p": params = 2 * np.pi - instruction.operation.params[0] instruction.operation.params[0] = params new_circ.append(instruction.operation, new_qubits) elif instruction.operation.name == "t": instruction.operation.name = "tdg" new_circ.append(instruction.operation, new_qubits) elif instruction.operation.name == "tdg": instruction.operation.name = "t" new_circ.append(instruction.operation, new_qubits) elif instruction.operation.name == "s": instruction.operation.name = "sdg" new_circ.append(instruction.operation, new_qubits) elif instruction.operation.name == "sdg": instruction.operation.name = "s" new_circ.append(instruction.operation, new_qubits) else: new_circ.append(instruction.operation, new_qubits) result = self._from_circuit(new_circ) return result
[documentos] def transpose(self): circ = self.to_instruction() result = self._from_circuit(circ.reverse_ops()) return result
def _is_valid(self): """Return True if input is a CNOTDihedral element.""" if ( self.poly.weight_0 != 0 or len(self.poly.weight_1) != self.num_qubits or len(self.poly.weight_2) != int(self.num_qubits * (self.num_qubits - 1) / 2) or len(self.poly.weight_3) != int(self.num_qubits * (self.num_qubits - 1) * (self.num_qubits - 2) / 6) ): return False if ( (self.linear).shape != (self.num_qubits, self.num_qubits) or len(self.shift) != self.num_qubits or not np.allclose((np.linalg.det(self.linear) % 2), 1) ): return False if ( not (set(self.poly.weight_1.flatten())).issubset({0, 1, 2, 3, 4, 5, 6, 7}) or not (set(self.poly.weight_2.flatten())).issubset({0, 2, 4, 6}) or not (set(self.poly.weight_3.flatten())).issubset({0, 4}) ): return False if not (set(self.shift.flatten())).issubset({0, 1}) or not ( set(self.linear.flatten()) ).issubset({0, 1}): return False return True
# Update docstrings for API docs generate_apidocs(CNOTDihedral)