OneQubitEulerDecomposer#
- class qiskit.quantum_info.OneQubitEulerDecomposer(basis='U3', use_dag=False)[fuente]#
Bases:
object
A class for decomposing 1-qubit unitaries into Euler angle rotations.
The resulting decomposition is parameterized by 3 Euler rotation angle parameters \((\theta, \phi, \lambda)\), and a phase parameter \(\gamma\). The value of the parameters for an input unitary depends on the decomposition basis. Allowed bases and the resulting circuits are shown in the following table. Note that for the non-Euler bases (U3, U1X, RR), the ZYZ Euler parameters are used.
Table 14 Supported circuit bases# Basis
Euler Angle Basis
Decomposition Circuit
“ZYZ”
\(Z(\phi) Y(\theta) Z(\lambda)\)
\(e^{i\gamma} R_Z(\phi).R_Y(\theta).R_Z(\lambda)\)
“ZXZ”
\(Z(\phi) X(\theta) Z(\lambda)\)
\(e^{i\gamma} R_Z(\phi).R_X(\theta).R_Z(\lambda)\)
“XYX”
\(X(\phi) Y(\theta) X(\lambda)\)
\(e^{i\gamma} R_X(\phi).R_Y(\theta).R_X(\lambda)\)
“XZX”
\(X(\phi) Z(\theta) X(\lambda)\)
\(e^{i\gamma} R_X(\phi).R_Z(\theta).R_X(\lambda)\)
“U3”
\(Z(\phi) Y(\theta) Z(\lambda)\)
\(e^{i\gamma} U_3(\theta,\phi,\lambda)\)
“U321”
\(Z(\phi) Y(\theta) Z(\lambda)\)
\(e^{i\gamma} U_3(\theta,\phi,\lambda)\)
“U”
\(Z(\phi) Y(\theta) Z(\lambda)\)
\(e^{i\gamma} U_3(\theta,\phi,\lambda)\)
“PSX”
\(Z(\phi) Y(\theta) Z(\lambda)\)
\(e^{i\gamma} U_1(\phi+\pi).R_X\left(\frac{\pi}{2}\right).\) \(U_1(\theta+\pi).R_X\left(\frac{\pi}{2}\right).U_1(\lambda)\)
“ZSX”
\(Z(\phi) Y(\theta) Z(\lambda)\)
\(e^{i\gamma} R_Z(\phi+\pi).\sqrt{X}.\) \(R_Z(\theta+\pi).\sqrt{X}.R_Z(\lambda)\)
“ZSXX”
\(Z(\phi) Y(\theta) Z(\lambda)\)
\(e^{i\gamma} R_Z(\phi+\pi).\sqrt{X}.R_Z(\theta+\pi).\sqrt{X}.R_Z(\lambda)\) or \(e^{i\gamma} R_Z(\phi+\pi).X.R_Z(\lambda)\)
“U1X”
\(Z(\phi) Y(\theta) Z(\lambda)\)
\(e^{i\gamma} U_1(\phi+\pi).R_X\left(\frac{\pi}{2}\right).\) \(U_1(\theta+\pi).R_X\left(\frac{\pi}{2}\right).U_1(\lambda)\)
“RR”
\(Z(\phi) Y(\theta) Z(\lambda)\)
\(e^{i\gamma} R\left(-\pi,\frac{\phi-\lambda+\pi}{2}\right).\) \(R\left(\theta+\pi,\frac{\pi}{2}-\lambda\right)\)
Initialize decomposer
Supported bases are: “U”, “PSX”, “ZSXX”, “ZSX”, “U321”, “U3”, “U1X”, “RR”, “ZYZ”, “ZXZ”, “XYX”, “XZX”.
- Parámetros:
basis (str) – the decomposition basis [Default: “U3”]
use_dag (bool) – If true the output from calls to the decomposer will be a
DAGCircuit
object instead ofQuantumCircuit
.
- Muestra:
QiskitError – If input basis is not recognized.
Attributes
- basis#
The decomposition basis.
Methods
- angles(unitary)[fuente]#
Return the Euler angles for input array.
- Parámetros:
unitary (np.ndarray) – 2x2 unitary matrix.
- Devuelve:
(theta, phi, lambda).
- Tipo del valor devuelto: