UnitaryGate#

class qiskit.extensions.UnitaryGate(data, label=None)[fuente]#

Bases: Gate

Class quantum gates specified by a unitary matrix.

Ejemplo

We can create a unitary gate from a unitary matrix then add it to a quantum circuit. The matrix can also be directly applied to the quantum circuit, see QuantumCircuit.unitary().

from qiskit import QuantumCircuit
from qiskit.extensions import UnitaryGate

matrix = [[0, 0, 0, 1],
          [0, 0, 1, 0],
          [1, 0, 0, 0],
          [0, 1, 0, 0]]
gate = UnitaryGate(matrix)

circuit = QuantumCircuit(2)
circuit.append(gate, [0, 1])

Create a gate from a numeric unitary matrix.

Parámetros:
  • data (matrix or Operator) – unitary operator.

  • label (str) – unitary name for backend [Default: None].

Muestra:

ExtensionError – if input data is not an N-qubit unitary operator.

Attributes

condition_bits#

Get Clbits in condition.

decompositions#

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition#

Return definition in terms of other basic gates.

duration#

Get the duration.

label#

Return instruction label

name#

Return the name.

num_clbits#

Return the number of clbits.

num_qubits#

Return the number of qubits.

params#

return instruction params.

unit#

Get the time unit of duration.

Methods

add_decomposition(decomposition)#

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

adjoint()[fuente]#

Return the adjoint of the unitary.

assemble()#

Assemble a QasmQobjInstruction

broadcast_arguments(qargs, cargs)#

Validation and handling of the arguments and its relationship.

For example, cx([q[0],q[1]], q[2]) means cx(q[0], q[2]); cx(q[1], q[2]). This method yields the arguments in the right grouping. In the given example:

in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
      [q[1], q[2]], []

The general broadcasting rules are:

  • If len(qargs) == 1:

    [q[0], q[1]] -> [q[0]],[q[1]]
    
  • If len(qargs) == 2:

    [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
    [[q[0]], [r[0], r[1]]]       -> [q[0], r[0]], [q[0], r[1]]
    [[q[0], q[1]], [r[0]]]       -> [q[0], r[0]], [q[1], r[0]]
    
  • If len(qargs) >= 3:

    [q[0], q[1]], [r[0], r[1]],  ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
    
Parámetros:
  • qargs (list) – List of quantum bit arguments.

  • cargs (list) – List of classical bit arguments.

Devuelve:

A tuple with single arguments.

Muestra:

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

Tipo del valor devuelto:

Iterable[tuple[list, list]]

c_if(classical, val)#

Set a classical equality condition on this instruction between the register or cbit classical and value val.

Nota

This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.

conjugate()[fuente]#

Return the conjugate of the unitary.

control(num_ctrl_qubits=1, label=None, ctrl_state=None)[fuente]#

Return controlled version of gate

Parámetros:
  • num_ctrl_qubits (int) – number of controls to add to gate (default=1)

  • label (str) – optional gate label

  • ctrl_state (int or str or None) – The control state in decimal or as a bit string (e.g. “1011”). If None, use 2**num_ctrl_qubits-1.

Devuelve:

controlled version of gate.

Tipo del valor devuelto:

UnitaryGate

Muestra:
copy(name=None)#

Copy of the instruction.

Parámetros:

name (str) – name to be given to the copied circuit, if None then the name stays the same.

Devuelve:

a copy of the current instruction, with the name updated if it was provided

Tipo del valor devuelto:

qiskit.circuit.Instruction

inverse()[fuente]#

Return the adjoint of the unitary.

is_parameterized()#

Return True .IFF. instruction is parameterized else False

power(exponent)#

Creates a unitary gate as gate^exponent.

Parámetros:

exponent (float) – Gate^exponent

Devuelve:

To which to_matrix is self.to_matrix^exponent.

Tipo del valor devuelto:

qiskit.extensions.UnitaryGate

Muestra:

CircuitError – If Gate is not unitary

qasm()#

Return a default OpenQASM string for the instruction.

Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).

Obsoleto desde la versión 0.25.0: The method qiskit.circuit.instruction.Instruction.qasm() is deprecated as of qiskit-terra 0.25.0. It will be removed no earlier than 3 months after the release date. Correct exporting to OpenQASM 2 is the responsibility of a larger exporter; it cannot safely be done on an object-by-object basis without context. No replacement will be provided, because the premise is wrong.

repeat(n)#

Creates an instruction with gate repeated n amount of times.

Parámetros:

n (int) – Number of times to repeat the instruction

Devuelve:

Containing the definition.

Tipo del valor devuelto:

qiskit.circuit.Instruction

Muestra:

CircuitError – If n < 1.

reverse_ops()#

For a composite instruction, reverse the order of sub-instructions.

This is done by recursively reversing all sub-instructions. It does not invert any gate.

Devuelve:

a new instruction with

sub-instructions reversed.

Tipo del valor devuelto:

qiskit.circuit.Instruction

soft_compare(other)#

Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.

Parámetros:

other (instruction) – other instruction.

Devuelve:

are self and other equal up to parameter expressions.

Tipo del valor devuelto:

bool

to_matrix()#

Return a Numpy.array for the gate unitary matrix.

Devuelve:

if the Gate subclass has a matrix definition.

Tipo del valor devuelto:

np.ndarray

Muestra:

CircuitError – If a Gate subclass does not implement this method an exception will be raised when this base class method is called.

transpose()[fuente]#

Return the transpose of the unitary.

validate_parameter(parameter)[fuente]#

Unitary gate parameter has to be an ndarray.