ECRGate#
- class qiskit.circuit.library.ECRGate[fuente]#
Bases:
Gate
An echoed cross-resonance gate.
This gate is maximally entangling and is equivalent to a CNOT up to single-qubit pre-rotations. The echoing procedure mitigates some unwanted terms (terms other than ZX) to cancel in an experiment. More specifically, this gate implements \(\frac{1}{\sqrt{2}}(IX-XY)\).
Can be applied to a
QuantumCircuit
with theecr()
method.Circuit Symbol:
┌─────────┐ ┌────────────┐┌────────┐┌─────────────┐ q_0: ┤0 ├ q_0: ┤0 ├┤ RX(pi) ├┤0 ├ │ ECR │ = │ RZX(pi/4) │└────────┘│ RZX(-pi/4) │ q_1: ┤1 ├ q_1: ┤1 ├──────────┤1 ├ └─────────┘ └────────────┘ └─────────────┘
Matrix Representation:
\[\begin{split}ECR\ q_0, q_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 & i \\ 1 & 0 & -i & 0 \\ 0 & i & 0 & 1 \\ -i & 0 & 1 & 0 \end{pmatrix}\end{split}\]Nota
In Qiskit’s convention, higher qubit indices are more significant (little endian convention). In the above example we apply the gate on (q_0, q_1) which results in the \(X \otimes Z\) tensor order. Instead, if we apply it on (q_1, q_0), the matrix will be \(Z \otimes X\):
┌─────────┐ q_0: ┤1 ├ │ ECR │ q_1: ┤0 ├ └─────────┘
\[\begin{split}ECR\ q_0, q_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 & i \\ 0 & 0 & i & 1 \\ 1 & -i & 0 & 0 \\ -i & 1 & 0 & 0 \end{pmatrix}\end{split}\]Create new ECR gate.
Attributes
- condition_bits#
Get Clbits in condition.
- decompositions#
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
- definition#
Return definition in terms of other basic gates.
- duration#
Get the duration.
- label#
Return instruction label
- name#
Return the name.
- num_clbits#
Return the number of clbits.
- num_qubits#
Return the number of qubits.
- params#
return instruction params.
- unit#
Get the time unit of duration.
Methods