Portuguese, Brazilian
Idiomas
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.aqua.components.multiclass_extensions.OneAgainstRest

class OneAgainstRest[código fonte]

The One Against Rest multiclass extension.

For an \(n\)-class problem, the one-against-rest method constructs \(n\) SVM classifiers, with the \(i\)-th classifier separating class \(i\) from all the remaining classes, \(\forall i \in \{1, 2, \ldots, n\}\). When the \(n\) classifiers are combined to make the final decision, the classifier that generates the highest value from its decision function is selected as the winner and the corresponding class label is returned.

__init__()[código fonte]

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__()

Initialize self.

predict(x)

Applying multiple estimators for prediction.

set_estimator(estimator_cls[, params])

Called internally to set Estimator and parameters :type estimator_cls: Callable[[List], Estimator] :param estimator_cls: An Estimator class :type params: Optional[List] :param params: Parameters for the estimator

test(x, y)

Testing multiple estimators each for distinguishing a pair of classes.

train(x, y)

Training multiple estimators each for distinguishing a pair of classes.

predict(x)[código fonte]

Applying multiple estimators for prediction.

Parâmetros

x (numpy.ndarray) – NxD array

Retorna

predicted labels, Nx1 array

Tipo de retorno

numpy.ndarray

set_estimator(estimator_cls, params=None)

Called internally to set Estimator and parameters :type estimator_cls: Callable[[List], Estimator] :param estimator_cls: An Estimator class :type params: Optional[List] :param params: Parameters for the estimator

Tipo de retorno

None

test(x, y)[código fonte]

Testing multiple estimators each for distinguishing a pair of classes.

Parâmetros
  • x (numpy.ndarray) – input points

  • y (numpy.ndarray) – input labels

Retorna

accuracy

Tipo de retorno

float

train(x, y)[código fonte]

Training multiple estimators each for distinguishing a pair of classes.

Parâmetros
  • x (numpy.ndarray) – input points

  • y (numpy.ndarray) – input labels

Levanta

Exception – given all data points are assigned to the same class, the prediction would be boring