Korean
언어
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.aqua.components.multiclass_extensions.OneAgainstRest

class OneAgainstRest[소스]

The One Against Rest multiclass extension.

For an \(n\)-class problem, the one-against-rest method constructs \(n\) SVM classifiers, with the \(i\)-th classifier separating class \(i\) from all the remaining classes, \(\forall i \in \{1, 2, \ldots, n\}\). When the \(n\) classifiers are combined to make the final decision, the classifier that generates the highest value from its decision function is selected as the winner and the corresponding class label is returned.

__init__()[소스]

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__()

Initialize self.

predict(x)

Applying multiple estimators for prediction.

set_estimator(estimator_cls[, params])

Called internally to set Estimator and parameters :type estimator_cls: Callable[[List], Estimator] :param estimator_cls: An Estimator class :type params: Optional[List] :param params: Parameters for the estimator

test(x, y)

Testing multiple estimators each for distinguishing a pair of classes.

train(x, y)

Training multiple estimators each for distinguishing a pair of classes.

predict(x)[소스]

Applying multiple estimators for prediction.

매개변수

x (numpy.ndarray) – NxD array

반환값

predicted labels, Nx1 array

반환 형식

numpy.ndarray

set_estimator(estimator_cls, params=None)

Called internally to set Estimator and parameters :type estimator_cls: Callable[[List], Estimator] :param estimator_cls: An Estimator class :type params: Optional[List] :param params: Parameters for the estimator

반환 형식

None

test(x, y)[소스]

Testing multiple estimators each for distinguishing a pair of classes.

매개변수
  • x (numpy.ndarray) – input points

  • y (numpy.ndarray) – input labels

반환값

accuracy

반환 형식

float

train(x, y)[소스]

Training multiple estimators each for distinguishing a pair of classes.

매개변수
  • x (numpy.ndarray) – input points

  • y (numpy.ndarray) – input labels

예외

Exception – given all data points are assigned to the same class, the prediction would be boring