Portuguese, Brazilian
Idiomas
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.aqua.components.multiclass_extensions.AllPairs

class AllPairs[código fonte]

The All-Pairs multiclass extension.

In the all-pairs reduction, one trains \(k(k−1)/2\) binary classifiers for a \(k\)-way multiclass problem; each receives the samples of a pair of classes from the original training set, and must learn to distinguish these two classes. At prediction time, a weighted voting scheme is used: all \(k(k−1)/2\) classifiers are applied to an unseen sample, and each class gets assigned the sum of all the scores obtained by the various classifiers. The combined classifier returns as a result the class getting the highest value.

__init__()[código fonte]

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__()

Initialize self.

predict(x)

Applying multiple estimators for prediction.

set_estimator(estimator_cls[, params])

Called internally to set Estimator and parameters :type estimator_cls: Callable[[List], Estimator] :param estimator_cls: An Estimator class :type params: Optional[List] :param params: Parameters for the estimator

test(x, y)

Testing multiple estimators each for distinguishing a pair of classes.

train(x, y)

Training multiple estimators each for distinguishing a pair of classes.

predict(x)[código fonte]

Applying multiple estimators for prediction.

Parâmetros

x (numpy.ndarray) – NxD array

Retorna

predicted labels, Nx1 array

Tipo de retorno

numpy.ndarray

set_estimator(estimator_cls, params=None)

Called internally to set Estimator and parameters :type estimator_cls: Callable[[List], Estimator] :param estimator_cls: An Estimator class :type params: Optional[List] :param params: Parameters for the estimator

Tipo de retorno

None

test(x, y)[código fonte]

Testing multiple estimators each for distinguishing a pair of classes.

Parâmetros
  • x (numpy.ndarray) – input points

  • y (numpy.ndarray) – input labels

Retorna

accuracy

Tipo de retorno

float

train(x, y)[código fonte]

Training multiple estimators each for distinguishing a pair of classes.

Parâmetros
  • x (numpy.ndarray) – input points

  • y (numpy.ndarray) – input labels

Levanta

ValueError – can not be fit when only one class is present.