qiskit.aqua.components.multiclass_extensions.AllPairs¶
-
class
AllPairs
[código fonte]¶ The All-Pairs multiclass extension.
In the all-pairs reduction, one trains \(k(k−1)/2\) binary classifiers for a \(k\)-way multiclass problem; each receives the samples of a pair of classes from the original training set, and must learn to distinguish these two classes. At prediction time, a weighted voting scheme is used: all \(k(k−1)/2\) classifiers are applied to an unseen sample, and each class gets assigned the sum of all the scores obtained by the various classifiers. The combined classifier returns as a result the class getting the highest value.
-
__init__
()[código fonte]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
()Initialize self.
predict
(x)Applying multiple estimators for prediction.
set_estimator
(estimator_cls[, params])Called internally to set
Estimator
and parameters :type estimator_cls:Callable
[[List
],Estimator
] :param estimator_cls: AnEstimator
class :type params:Optional
[List
] :param params: Parameters for the estimatortest
(x, y)Testing multiple estimators each for distinguishing a pair of classes.
train
(x, y)Training multiple estimators each for distinguishing a pair of classes.
-
predict
(x)[código fonte]¶ Applying multiple estimators for prediction.
- Parâmetros
x (numpy.ndarray) – NxD array
- Retorna
predicted labels, Nx1 array
- Tipo de retorno
numpy.ndarray
-
set_estimator
(estimator_cls, params=None)¶ Called internally to set
Estimator
and parameters :type estimator_cls:Callable
[[List
],Estimator
] :param estimator_cls: AnEstimator
class :type params:Optional
[List
] :param params: Parameters for the estimator- Tipo de retorno
None
-
test
(x, y)[código fonte]¶ Testing multiple estimators each for distinguishing a pair of classes.
- Parâmetros
x (numpy.ndarray) – input points
y (numpy.ndarray) – input labels
- Retorna
accuracy
- Tipo de retorno
float
-
train
(x, y)[código fonte]¶ Training multiple estimators each for distinguishing a pair of classes.
- Parâmetros
x (numpy.ndarray) – input points
y (numpy.ndarray) – input labels
- Levanta
ValueError – can not be fit when only one class is present.
-