Source code for qiskit.circuit.library.standard_gates.rxx

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Two-qubit XX-rotation gate."""
import math
from typing import Optional
import numpy
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.circuit.parameterexpression import ParameterValueType


[docs]class RXXGate(Gate): r"""A parametric 2-qubit :math:`X \otimes X` interaction (rotation about XX). This gate is symmetric, and is maximally entangling at :math:`\theta = \pi/2`. Can be applied to a :class:`~qiskit.circuit.QuantumCircuit` with the :meth:`~qiskit.circuit.QuantumCircuit.rxx` method. **Circuit Symbol:** .. parsed-literal:: ┌─────────┐ q_0: ┤1 ├ │ Rxx(ϴ) │ q_1: ┤0 ├ └─────────┘ **Matrix Representation:** .. math:: \newcommand{\th}{\frac{\theta}{2}} R_{XX}(\theta) = \exp\left(-i \th X{\otimes}X\right) = \begin{pmatrix} \cos\left(\th\right) & 0 & 0 & -i\sin\left(\th\right) \\ 0 & \cos\left(\th\right) & -i\sin\left(\th\right) & 0 \\ 0 & -i\sin\left(\th\right) & \cos\left(\th\right) & 0 \\ -i\sin\left(\th\right) & 0 & 0 & \cos\left(\th\right) \end{pmatrix} **Examples:** .. math:: R_{XX}(\theta = 0) = I .. math:: R_{XX}(\theta = \pi) = i X \otimes X .. math:: R_{XX}\left(\theta = \frac{\pi}{2}\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & -i \\ 0 & 1 & -i & 0 \\ 0 & -i & 1 & 0 \\ -i & 0 & 0 & 1 \end{pmatrix} """ def __init__(self, theta: ParameterValueType, label: Optional[str] = None): """Create new RXX gate.""" super().__init__("rxx", 2, [theta], label=label) def _define(self): """Calculate a subcircuit that implements this unitary.""" # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .x import CXGate from .h import HGate from .rz import RZGate # ┌───┐ ┌───┐ # q_0: ┤ H ├──■─────────────■──┤ H ├ # ├───┤┌─┴─┐┌───────┐┌─┴─┐├───┤ # q_1: ┤ H ├┤ X ├┤ Rz(0) ├┤ X ├┤ H ├ # └───┘└───┘└───────┘└───┘└───┘ theta = self.params[0] q = QuantumRegister(2, "q") qc = QuantumCircuit(q, name=self.name) rules = [ (HGate(), [q[0]], []), (HGate(), [q[1]], []), (CXGate(), [q[0], q[1]], []), (RZGate(theta), [q[1]], []), (CXGate(), [q[0], q[1]], []), (HGate(), [q[1]], []), (HGate(), [q[0]], []), ] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[docs] def inverse(self): """Return inverse RXX gate (i.e. with the negative rotation angle).""" return RXXGate(-self.params[0])
def __array__(self, dtype=None): """Return a Numpy.array for the RXX gate.""" theta2 = float(self.params[0]) / 2 cos = math.cos(theta2) isin = 1j * math.sin(theta2) return numpy.array( [[cos, 0, 0, -isin], [0, cos, -isin, 0], [0, -isin, cos, 0], [-isin, 0, 0, cos]], dtype=dtype, )
[docs] def power(self, exponent: float): """Raise gate to a power.""" (theta,) = self.params return RXXGate(exponent * theta)